feat: implements concurrent Smt::compute_mutations (#365)

This commit is contained in:
Krushimir 2025-02-07 01:51:11 +01:00 committed by GitHub
parent d569c71666
commit 1b77fa8039
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 771 additions and 461 deletions

View file

@ -11,6 +11,8 @@
## 0.13.1 (2024-12-26) ## 0.13.1 (2024-12-26)
- Generate reverse mutations set on applying of mutations set, implemented serialization of `MutationsSet` (#355). - Generate reverse mutations set on applying of mutations set, implemented serialization of `MutationsSet` (#355).
- Added parallel implementation of `Smt::compute_mutations` with better performance (#365).
- Implemented parallel leaf hashing in `Smt::process_sorted_pairs_to_leaves` (#365).
## 0.13.0 (2024-11-24) ## 0.13.0 (2024-11-24)

View file

@ -45,7 +45,7 @@ name = "store"
harness = false harness = false
[features] [features]
concurrent = ["dep:rayon"] concurrent = ["dep:rayon", "hashbrown?/rayon"]
default = ["std", "concurrent"] default = ["std", "concurrent"]
executable = ["dep:clap", "dep:rand-utils", "std"] executable = ["dep:clap", "dep:rand-utils", "std"]
smt_hashmaps = ["dep:hashbrown"] smt_hashmaps = ["dep:hashbrown"]

View file

@ -13,8 +13,14 @@ use rand_utils::rand_value;
#[clap(name = "Benchmark", about = "SMT benchmark", version, rename_all = "kebab-case")] #[clap(name = "Benchmark", about = "SMT benchmark", version, rename_all = "kebab-case")]
pub struct BenchmarkCmd { pub struct BenchmarkCmd {
/// Size of the tree /// Size of the tree
#[clap(short = 's', long = "size")] #[clap(short = 's', long = "size", default_value = "1000000")]
size: usize, size: usize,
/// Number of insertions
#[clap(short = 'i', long = "insertions", default_value = "1000")]
insertions: usize,
/// Number of updates
#[clap(short = 'u', long = "updates", default_value = "1000")]
updates: usize,
} }
fn main() { fn main() {
@ -25,7 +31,10 @@ fn main() {
pub fn benchmark_smt() { pub fn benchmark_smt() {
let args = BenchmarkCmd::parse(); let args = BenchmarkCmd::parse();
let tree_size = args.size; let tree_size = args.size;
let insertions = args.insertions;
let updates = args.updates;
assert!(updates <= tree_size, "Cannot update more than `size`");
// prepare the `leaves` vector for tree creation // prepare the `leaves` vector for tree creation
let mut entries = Vec::new(); let mut entries = Vec::new();
for i in 0..tree_size { for i in 0..tree_size {
@ -35,9 +44,9 @@ pub fn benchmark_smt() {
} }
let mut tree = construction(entries.clone(), tree_size).unwrap(); let mut tree = construction(entries.clone(), tree_size).unwrap();
insertion(&mut tree).unwrap(); insertion(&mut tree.clone(), insertions).unwrap();
batched_insertion(&mut tree).unwrap(); batched_insertion(&mut tree.clone(), insertions).unwrap();
batched_update(&mut tree, entries).unwrap(); batched_update(&mut tree.clone(), entries, updates).unwrap();
proof_generation(&mut tree).unwrap(); proof_generation(&mut tree).unwrap();
} }
@ -47,23 +56,20 @@ pub fn construction(entries: Vec<(RpoDigest, Word)>, size: usize) -> Result<Smt,
let now = Instant::now(); let now = Instant::now();
let tree = Smt::with_entries(entries)?; let tree = Smt::with_entries(entries)?;
let elapsed = now.elapsed().as_secs_f32(); let elapsed = now.elapsed().as_secs_f32();
println!("Constructed an SMT with {size} key-value pairs in {elapsed:.1} seconds");
println!("Constructed a SMT with {size} key-value pairs in {elapsed:.1} seconds");
println!("Number of leaf nodes: {}\n", tree.leaves().count()); println!("Number of leaf nodes: {}\n", tree.leaves().count());
Ok(tree) Ok(tree)
} }
/// Runs the insertion benchmark for the [`Smt`]. /// Runs the insertion benchmark for the [`Smt`].
pub fn insertion(tree: &mut Smt) -> Result<(), MerkleError> { pub fn insertion(tree: &mut Smt, insertions: usize) -> Result<(), MerkleError> {
const NUM_INSERTIONS: usize = 1_000;
println!("Running an insertion benchmark:"); println!("Running an insertion benchmark:");
let size = tree.num_leaves(); let size = tree.num_leaves();
let mut insertion_times = Vec::new(); let mut insertion_times = Vec::new();
for i in 0..NUM_INSERTIONS { for i in 0..insertions {
let test_key = Rpo256::hash(&rand_value::<u64>().to_be_bytes()); let test_key = Rpo256::hash(&rand_value::<u64>().to_be_bytes());
let test_value = [ONE, ONE, ONE, Felt::new((size + i) as u64)]; let test_value = [ONE, ONE, ONE, Felt::new((size + i) as u64)];
@ -74,22 +80,20 @@ pub fn insertion(tree: &mut Smt) -> Result<(), MerkleError> {
} }
println!( println!(
"An average insertion time measured by {NUM_INSERTIONS} inserts into an SMT with {size} leaves is {:.0} μs\n", "The average insertion time measured by {insertions} inserts into an SMT with {size} leaves is {:.0} μs\n",
// calculate the average // calculate the average
insertion_times.iter().sum::<u128>() as f64 / (NUM_INSERTIONS as f64), insertion_times.iter().sum::<u128>() as f64 / (insertions as f64),
); );
Ok(()) Ok(())
} }
pub fn batched_insertion(tree: &mut Smt) -> Result<(), MerkleError> { pub fn batched_insertion(tree: &mut Smt, insertions: usize) -> Result<(), MerkleError> {
const NUM_INSERTIONS: usize = 1_000;
println!("Running a batched insertion benchmark:"); println!("Running a batched insertion benchmark:");
let size = tree.num_leaves(); let size = tree.num_leaves();
let new_pairs: Vec<(RpoDigest, Word)> = (0..NUM_INSERTIONS) let new_pairs: Vec<(RpoDigest, Word)> = (0..insertions)
.map(|i| { .map(|i| {
let key = Rpo256::hash(&rand_value::<u64>().to_be_bytes()); let key = Rpo256::hash(&rand_value::<u64>().to_be_bytes());
let value = [ONE, ONE, ONE, Felt::new((size + i) as u64)]; let value = [ONE, ONE, ONE, Felt::new((size + i) as u64)];
@ -101,24 +105,24 @@ pub fn batched_insertion(tree: &mut Smt) -> Result<(), MerkleError> {
let mutations = tree.compute_mutations(new_pairs); let mutations = tree.compute_mutations(new_pairs);
let compute_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms let compute_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
println!(
"The average insert-batch computation time measured by a {insertions}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
compute_elapsed,
compute_elapsed * 1000_f64 / insertions as f64, // time in μs
);
let now = Instant::now(); let now = Instant::now();
tree.apply_mutations(mutations)?; tree.apply_mutations(mutations)?;
let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
println!( println!(
"An average insert-batch computation time measured by a {NUM_INSERTIONS}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs", "The average insert-batch application time measured by a {insertions}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
compute_elapsed,
compute_elapsed * 1000_f64 / NUM_INSERTIONS as f64, // time in μs
);
println!(
"An average insert-batch application time measured by a {NUM_INSERTIONS}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
apply_elapsed, apply_elapsed,
apply_elapsed * 1000_f64 / NUM_INSERTIONS as f64, // time in μs apply_elapsed * 1000_f64 / insertions as f64, // time in μs
); );
println!( println!(
"An average batch insertion time measured by a 1k-batch into an SMT with {size} leaves totals to {:.1} ms", "The average batch insertion time measured by a {insertions}-batch into an SMT with {size} leaves totals to {:.1} ms",
(compute_elapsed + apply_elapsed), (compute_elapsed + apply_elapsed),
); );
@ -127,8 +131,11 @@ pub fn batched_insertion(tree: &mut Smt) -> Result<(), MerkleError> {
Ok(()) Ok(())
} }
pub fn batched_update(tree: &mut Smt, entries: Vec<(RpoDigest, Word)>) -> Result<(), MerkleError> { pub fn batched_update(
const NUM_UPDATES: usize = 1_000; tree: &mut Smt,
entries: Vec<(RpoDigest, Word)>,
updates: usize,
) -> Result<(), MerkleError> {
const REMOVAL_PROBABILITY: f64 = 0.2; const REMOVAL_PROBABILITY: f64 = 0.2;
println!("Running a batched update benchmark:"); println!("Running a batched update benchmark:");
@ -139,7 +146,7 @@ pub fn batched_update(tree: &mut Smt, entries: Vec<(RpoDigest, Word)>) -> Result
let new_pairs = let new_pairs =
entries entries
.into_iter() .into_iter()
.choose_multiple(&mut rng, NUM_UPDATES) .choose_multiple(&mut rng, updates)
.into_iter() .into_iter()
.map(|(key, _)| { .map(|(key, _)| {
let value = if rng.gen_bool(REMOVAL_PROBABILITY) { let value = if rng.gen_bool(REMOVAL_PROBABILITY) {
@ -151,7 +158,7 @@ pub fn batched_update(tree: &mut Smt, entries: Vec<(RpoDigest, Word)>) -> Result
(key, value) (key, value)
}); });
assert_eq!(new_pairs.len(), NUM_UPDATES); assert_eq!(new_pairs.len(), updates);
let now = Instant::now(); let now = Instant::now();
let mutations = tree.compute_mutations(new_pairs); let mutations = tree.compute_mutations(new_pairs);
@ -162,19 +169,19 @@ pub fn batched_update(tree: &mut Smt, entries: Vec<(RpoDigest, Word)>) -> Result
let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
println!( println!(
"An average update-batch computation time measured by a {NUM_UPDATES}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs", "The average update-batch computation time measured by a {updates}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
compute_elapsed, compute_elapsed,
compute_elapsed * 1000_f64 / NUM_UPDATES as f64, // time in μs compute_elapsed * 1000_f64 / updates as f64, // time in μs
); );
println!( println!(
"An average update-batch application time measured by a {NUM_UPDATES}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs", "The average update-batch application time measured by a {updates}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
apply_elapsed, apply_elapsed,
apply_elapsed * 1000_f64 / NUM_UPDATES as f64, // time in μs apply_elapsed * 1000_f64 / updates as f64, // time in μs
); );
println!( println!(
"An average batch update time measured by a 1k-batch into an SMT with {size} leaves totals to {:.1} ms", "The average batch update time measured by a {updates}-batch into an SMT with {size} leaves totals to {:.1} ms",
(compute_elapsed + apply_elapsed), (compute_elapsed + apply_elapsed),
); );
@ -203,7 +210,7 @@ pub fn proof_generation(tree: &mut Smt) -> Result<(), MerkleError> {
} }
println!( println!(
"An average proving time measured by {NUM_PROOFS} value proofs in an SMT with {size} leaves in {:.0} μs", "The average proving time measured by {NUM_PROOFS} value proofs in an SMT with {size} leaves in {:.0} μs",
// calculate the average // calculate the average
insertion_times.iter().sum::<u128>() as f64 / (NUM_PROOFS as f64), insertion_times.iter().sum::<u128>() as f64 / (NUM_PROOFS as f64),
); );

View file

@ -22,10 +22,10 @@ pub use path::{MerklePath, RootPath, ValuePath};
mod smt; mod smt;
#[cfg(feature = "internal")] #[cfg(feature = "internal")]
pub use smt::build_subtree_for_bench; pub use smt::{build_subtree_for_bench, SubtreeLeaf};
pub use smt::{ pub use smt::{
InnerNode, LeafIndex, MutationSet, NodeMutation, SimpleSmt, Smt, SmtLeaf, SmtLeafError, InnerNode, LeafIndex, MutationSet, NodeMutation, SimpleSmt, Smt, SmtLeaf, SmtLeafError,
SmtProof, SmtProofError, SubtreeLeaf, SMT_DEPTH, SMT_MAX_DEPTH, SMT_MIN_DEPTH, SmtProof, SmtProofError, SMT_DEPTH, SMT_MAX_DEPTH, SMT_MIN_DEPTH,
}; };
mod mmr; mod mmr;

View file

@ -0,0 +1,580 @@
use alloc::{collections::BTreeSet, vec::Vec};
use core::mem;
use num::Integer;
use super::{
EmptySubtreeRoots, InnerNode, InnerNodes, LeafIndex, Leaves, MerkleError, MutationSet,
NodeIndex, RpoDigest, Smt, SmtLeaf, SparseMerkleTree, Word, SMT_DEPTH,
};
use crate::merkle::smt::{NodeMutation, NodeMutations, UnorderedMap};
#[cfg(test)]
mod tests;
type MutatedSubtreeLeaves = Vec<Vec<SubtreeLeaf>>;
impl Smt {
/// Parallel implementation of [`Smt::with_entries()`].
///
/// This method constructs a new sparse Merkle tree concurrently by processing subtrees in
/// parallel, working from the bottom up. The process works as follows:
///
/// 1. First, the input key-value pairs are sorted and grouped into subtrees based on their leaf
/// indices. Each subtree covers a range of 256 (2^8) possible leaf positions.
///
/// 2. The subtrees are then processed in parallel:
/// - For each subtree, compute the inner nodes from depth D down to depth D-8.
/// - Each subtree computation yields a new subtree root and its associated inner nodes.
///
/// 3. These subtree roots are recursively merged to become the "leaves" for the next iteration,
/// which processes the next 8 levels up. This continues until the final root of the tree is
/// computed at depth 0.
pub(crate) fn with_entries_concurrent(
entries: impl IntoIterator<Item = (RpoDigest, Word)>,
) -> Result<Self, MerkleError> {
let mut seen_keys = BTreeSet::new();
let entries: Vec<_> = entries
.into_iter()
.map(|(key, value)| {
if seen_keys.insert(key) {
Ok((key, value))
} else {
Err(MerkleError::DuplicateValuesForIndex(
LeafIndex::<SMT_DEPTH>::from(key).value(),
))
}
})
.collect::<Result<_, _>>()?;
if entries.is_empty() {
return Ok(Self::default());
}
let (inner_nodes, leaves) = Self::build_subtrees(entries);
let root = inner_nodes.get(&NodeIndex::root()).unwrap().hash();
<Self as SparseMerkleTree<SMT_DEPTH>>::from_raw_parts(inner_nodes, leaves, root)
}
/// Parallel implementation of [`Smt::compute_mutations()`].
///
/// This method computes mutations by recursively processing subtrees in parallel, working from
/// the bottom up. The process works as follows:
///
/// 1. First, the input key-value pairs are sorted and grouped into subtrees based on their leaf
/// indices. Each subtree covers a range of 256 (2^8) possible leaf positions.
///
/// 2. The subtrees containing modifications are then processed in parallel:
/// - For each modified subtree, compute node mutations from depth D up to depth D-8
/// - Each subtree computation yields a new root at depth D-8 and its associated mutations
///
/// 3. These subtree roots become the "leaves" for the next iteration, which processes the next
/// 8 levels up. This continues until reaching the tree's root at depth 0.
pub(crate) fn compute_mutations_concurrent(
&self,
kv_pairs: impl IntoIterator<Item = (RpoDigest, Word)>,
) -> MutationSet<SMT_DEPTH, RpoDigest, Word>
where
Self: Sized + Sync,
{
use rayon::prelude::*;
// Collect and sort key-value pairs by their corresponding leaf index
let mut sorted_kv_pairs: Vec<_> = kv_pairs.into_iter().collect();
sorted_kv_pairs.par_sort_unstable_by_key(|(key, _)| Self::key_to_leaf_index(key).value());
// Convert sorted pairs into mutated leaves and capture any new pairs
let (mut subtree_leaves, new_pairs) =
self.sorted_pairs_to_mutated_subtree_leaves(sorted_kv_pairs);
let mut node_mutations = NodeMutations::default();
// Process each depth level in reverse, stepping by the subtree depth
for depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
// Parallel processing of each subtree to generate mutations and roots
let (mutations_per_subtree, mut subtree_roots): (Vec<_>, Vec<_>) = subtree_leaves
.into_par_iter()
.map(|subtree| {
debug_assert!(subtree.is_sorted() && !subtree.is_empty());
self.build_subtree_mutations(subtree, SMT_DEPTH, depth)
})
.unzip();
// Prepare leaves for the next depth level
subtree_leaves = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
// Aggregate all node mutations
node_mutations.extend(mutations_per_subtree.into_iter().flatten());
debug_assert!(!subtree_leaves.is_empty());
}
// Finalize the mutation set with updated roots and mutations
MutationSet {
old_root: self.root(),
new_root: subtree_leaves[0][0].hash,
node_mutations,
new_pairs,
}
}
/// Performs the initial transforms for constructing a [`SparseMerkleTree`] by composing
/// subtrees. In other words, this function takes the key-value inputs to the tree, and produces
/// the inputs to feed into [`build_subtree()`].
///
/// `pairs` *must* already be sorted **by leaf index column**, not simply sorted by key. If
/// `pairs` is not correctly sorted, the returned computations will be incorrect.
///
/// # Panics
/// With debug assertions on, this function panics if it detects that `pairs` is not correctly
/// sorted. Without debug assertions, the returned computations will be incorrect.
fn sorted_pairs_to_leaves(pairs: Vec<(RpoDigest, Word)>) -> PairComputations<u64, SmtLeaf> {
Self::process_sorted_pairs_to_leaves(pairs, Self::pairs_to_leaf)
}
/// Computes leaves from a set of key-value pairs and current leaf values.
/// Derived from `sorted_pairs_to_leaves`
fn sorted_pairs_to_mutated_subtree_leaves(
&self,
pairs: Vec<(RpoDigest, Word)>,
) -> (MutatedSubtreeLeaves, UnorderedMap<RpoDigest, Word>) {
// Map to track new key-value pairs for mutated leaves
let mut new_pairs = UnorderedMap::new();
let accumulator = Self::process_sorted_pairs_to_leaves(pairs, |leaf_pairs| {
let mut leaf = self.get_leaf(&leaf_pairs[0].0);
for (key, value) in leaf_pairs {
// Check if the value has changed
let old_value =
new_pairs.get(&key).cloned().unwrap_or_else(|| self.get_value(&key));
// Skip if the value hasn't changed
if value == old_value {
continue;
}
// Otherwise, update the leaf and track the new key-value pair
leaf = self.construct_prospective_leaf(leaf, &key, &value);
new_pairs.insert(key, value);
}
leaf
});
(accumulator.leaves, new_pairs)
}
/// Computes the node mutations and the root of a subtree
fn build_subtree_mutations(
&self,
mut leaves: Vec<SubtreeLeaf>,
tree_depth: u8,
bottom_depth: u8,
) -> (NodeMutations, SubtreeLeaf)
where
Self: Sized,
{
debug_assert!(bottom_depth <= tree_depth);
debug_assert!(Integer::is_multiple_of(&bottom_depth, &SUBTREE_DEPTH));
debug_assert!(leaves.len() <= usize::pow(2, SUBTREE_DEPTH as u32));
let subtree_root_depth = bottom_depth - SUBTREE_DEPTH;
let mut node_mutations: NodeMutations = Default::default();
let mut next_leaves: Vec<SubtreeLeaf> = Vec::with_capacity(leaves.len() / 2);
for current_depth in (subtree_root_depth..bottom_depth).rev() {
debug_assert!(current_depth <= bottom_depth);
let next_depth = current_depth + 1;
let mut iter = leaves.drain(..).peekable();
while let Some(first_leaf) = iter.next() {
// This constructs a valid index because next_depth will never exceed the depth of
// the tree.
let parent_index = NodeIndex::new_unchecked(next_depth, first_leaf.col).parent();
let parent_node = self.get_inner_node(parent_index);
let combined_node = Self::fetch_sibling_pair(&mut iter, first_leaf, parent_node);
let combined_hash = combined_node.hash();
let &empty_hash = EmptySubtreeRoots::entry(tree_depth, current_depth);
// Add the parent node even if it is empty for proper upward updates
next_leaves.push(SubtreeLeaf {
col: parent_index.value(),
hash: combined_hash,
});
node_mutations.insert(
parent_index,
if combined_hash != empty_hash {
NodeMutation::Addition(combined_node)
} else {
NodeMutation::Removal
},
);
}
drop(iter);
leaves = mem::take(&mut next_leaves);
}
debug_assert_eq!(leaves.len(), 1);
let root_leaf = leaves.pop().unwrap();
(node_mutations, root_leaf)
}
/// Constructs an `InnerNode` representing the sibling pair of which `first_leaf` is a part:
/// - If `first_leaf` is a right child, the left child is copied from the `parent_node`.
/// - If `first_leaf` is a left child, the right child is taken from `iter` if it was also
/// mutated or copied from the `parent_node`.
///
/// Returns the `InnerNode` containing the hashes of the sibling pair.
fn fetch_sibling_pair(
iter: &mut core::iter::Peekable<alloc::vec::Drain<SubtreeLeaf>>,
first_leaf: SubtreeLeaf,
parent_node: InnerNode,
) -> InnerNode {
let is_right_node = first_leaf.col.is_odd();
if is_right_node {
let left_leaf = SubtreeLeaf {
col: first_leaf.col - 1,
hash: parent_node.left,
};
InnerNode {
left: left_leaf.hash,
right: first_leaf.hash,
}
} else {
let right_col = first_leaf.col + 1;
let right_leaf = match iter.peek().copied() {
Some(SubtreeLeaf { col, .. }) if col == right_col => iter.next().unwrap(),
_ => SubtreeLeaf { col: right_col, hash: parent_node.right },
};
InnerNode {
left: first_leaf.hash,
right: right_leaf.hash,
}
}
}
/// Processes sorted key-value pairs to compute leaves for a subtree.
///
/// This function groups key-value pairs by their corresponding column index and processes each
/// group to construct leaves. The actual construction of the leaf is delegated to the
/// `process_leaf` callback, allowing flexibility for different use cases (e.g., creating
/// new leaves or mutating existing ones).
///
/// # Parameters
/// - `pairs`: A vector of sorted key-value pairs. The pairs *must* be sorted by leaf index
/// column (not simply by key). If the input is not sorted correctly, the function will
/// produce incorrect results and may panic in debug mode.
/// - `process_leaf`: A callback function used to process each group of key-value pairs
/// corresponding to the same column index. The callback takes a vector of key-value pairs for
/// a single column and returns the constructed leaf for that column.
///
/// # Returns
/// A `PairComputations<u64, Self::Leaf>` containing:
/// - `nodes`: A mapping of column indices to the constructed leaves.
/// - `leaves`: A collection of `SubtreeLeaf` structures representing the processed leaves. Each
/// `SubtreeLeaf` includes the column index and the hash of the corresponding leaf.
///
/// # Panics
/// This function will panic in debug mode if the input `pairs` are not sorted by column index.
fn process_sorted_pairs_to_leaves<F>(
pairs: Vec<(RpoDigest, Word)>,
mut process_leaf: F,
) -> PairComputations<u64, SmtLeaf>
where
F: FnMut(Vec<(RpoDigest, Word)>) -> SmtLeaf,
{
use rayon::prelude::*;
debug_assert!(pairs.is_sorted_by_key(|(key, _)| Self::key_to_leaf_index(key).value()));
let mut accumulator: PairComputations<u64, SmtLeaf> = Default::default();
// As we iterate, we'll keep track of the kv-pairs we've seen so far that correspond to a
// single leaf. When we see a pair that's in a different leaf, we'll swap these pairs
// out and store them in our accumulated leaves.
let mut current_leaf_buffer: Vec<(RpoDigest, Word)> = Default::default();
let mut iter = pairs.into_iter().peekable();
while let Some((key, value)) = iter.next() {
let col = Self::key_to_leaf_index(&key).index.value();
let peeked_col = iter.peek().map(|(key, _v)| {
let index = Self::key_to_leaf_index(key);
let next_col = index.index.value();
// We panic if `pairs` is not sorted by column.
debug_assert!(next_col >= col);
next_col
});
current_leaf_buffer.push((key, value));
// If the next pair is the same column as this one, then we're done after adding this
// pair to the buffer.
if peeked_col == Some(col) {
continue;
}
// Otherwise, the next pair is a different column, or there is no next pair. Either way
// it's time to swap out our buffer.
let leaf_pairs = mem::take(&mut current_leaf_buffer);
let leaf = process_leaf(leaf_pairs);
accumulator.nodes.insert(col, leaf);
debug_assert!(current_leaf_buffer.is_empty());
}
// Compute the leaves from the nodes concurrently
let mut accumulated_leaves: Vec<SubtreeLeaf> = accumulator
.nodes
.clone()
.into_par_iter()
.map(|(col, leaf)| SubtreeLeaf { col, hash: Self::hash_leaf(&leaf) })
.collect();
// Sort the leaves by column
accumulated_leaves.par_sort_by_key(|leaf| leaf.col);
// TODO: determine is there is any notable performance difference between computing
// subtree boundaries after the fact as an iterator adapter (like this), versus computing
// subtree boundaries as we go. Either way this function is only used at the beginning of a
// parallel construction, so it should not be a critical path.
accumulator.leaves = SubtreeLeavesIter::from_leaves(&mut accumulated_leaves).collect();
accumulator
}
/// Computes the raw parts for a new sparse Merkle tree from a set of key-value pairs.
///
/// `entries` need not be sorted. This function will sort them.
fn build_subtrees(mut entries: Vec<(RpoDigest, Word)>) -> (InnerNodes, Leaves) {
entries.sort_by_key(|item| {
let index = Self::key_to_leaf_index(&item.0);
index.value()
});
Self::build_subtrees_from_sorted_entries(entries)
}
/// Computes the raw parts for a new sparse Merkle tree from a set of key-value pairs.
///
/// This function is mostly an implementation detail of
/// [`Smt::with_entries_concurrent()`].
fn build_subtrees_from_sorted_entries(entries: Vec<(RpoDigest, Word)>) -> (InnerNodes, Leaves) {
use rayon::prelude::*;
let mut accumulated_nodes: InnerNodes = Default::default();
let PairComputations {
leaves: mut leaf_subtrees,
nodes: initial_leaves,
} = Self::sorted_pairs_to_leaves(entries);
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
let (nodes, mut subtree_roots): (Vec<UnorderedMap<_, _>>, Vec<SubtreeLeaf>) =
leaf_subtrees
.into_par_iter()
.map(|subtree| {
debug_assert!(subtree.is_sorted());
debug_assert!(!subtree.is_empty());
let (nodes, subtree_root) =
build_subtree(subtree, SMT_DEPTH, current_depth);
(nodes, subtree_root)
})
.unzip();
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten());
debug_assert!(!leaf_subtrees.is_empty());
}
(accumulated_nodes, initial_leaves)
}
}
// SUBTREES
// ================================================================================================
/// A subtree is of depth 8.
const SUBTREE_DEPTH: u8 = 8;
/// A depth-8 subtree contains 256 "columns" that can possibly be occupied.
const COLS_PER_SUBTREE: u64 = u64::pow(2, SUBTREE_DEPTH as u32);
/// Helper struct for organizing the data we care about when computing Merkle subtrees.
///
/// Note that these represet "conceptual" leaves of some subtree, not necessarily
/// the leaf type for the sparse Merkle tree.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Default)]
pub struct SubtreeLeaf {
/// The 'value' field of [`NodeIndex`]. When computing a subtree, the depth is already known.
pub col: u64,
/// The hash of the node this `SubtreeLeaf` represents.
pub hash: RpoDigest,
}
/// Helper struct to organize the return value of [`Smt::sorted_pairs_to_leaves()`].
#[derive(Debug, Clone)]
pub(crate) struct PairComputations<K, L> {
/// Literal leaves to be added to the sparse Merkle tree's internal mapping.
pub nodes: UnorderedMap<K, L>,
/// "Conceptual" leaves that will be used for computations.
pub leaves: Vec<Vec<SubtreeLeaf>>,
}
// Derive requires `L` to impl Default, even though we don't actually need that.
impl<K, L> Default for PairComputations<K, L> {
fn default() -> Self {
Self {
nodes: Default::default(),
leaves: Default::default(),
}
}
}
#[derive(Debug)]
pub(crate) struct SubtreeLeavesIter<'s> {
leaves: core::iter::Peekable<alloc::vec::Drain<'s, SubtreeLeaf>>,
}
impl<'s> SubtreeLeavesIter<'s> {
fn from_leaves(leaves: &'s mut Vec<SubtreeLeaf>) -> Self {
// TODO: determine if there is any notable performance difference between taking a Vec,
// which many need flattening first, vs storing a `Box<dyn Iterator<Item = SubtreeLeaf>>`.
// The latter may have self-referential properties that are impossible to express in purely
// safe Rust Rust.
Self { leaves: leaves.drain(..).peekable() }
}
}
impl Iterator for SubtreeLeavesIter<'_> {
type Item = Vec<SubtreeLeaf>;
/// Each `next()` collects an entire subtree.
fn next(&mut self) -> Option<Vec<SubtreeLeaf>> {
let mut subtree: Vec<SubtreeLeaf> = Default::default();
let mut last_subtree_col = 0;
while let Some(leaf) = self.leaves.peek() {
last_subtree_col = u64::max(1, last_subtree_col);
let is_exact_multiple = Integer::is_multiple_of(&last_subtree_col, &COLS_PER_SUBTREE);
let next_subtree_col = if is_exact_multiple {
u64::next_multiple_of(last_subtree_col + 1, COLS_PER_SUBTREE)
} else {
last_subtree_col.next_multiple_of(COLS_PER_SUBTREE)
};
last_subtree_col = leaf.col;
if leaf.col < next_subtree_col {
subtree.push(self.leaves.next().unwrap());
} else if subtree.is_empty() {
continue;
} else {
break;
}
}
if subtree.is_empty() {
debug_assert!(self.leaves.peek().is_none());
return None;
}
Some(subtree)
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Builds Merkle nodes from a bottom layer of "leaves" -- represented by a horizontal index and
/// the hash of the leaf at that index. `leaves` *must* be sorted by horizontal index, and
/// `leaves` must not contain more than one depth-8 subtree's worth of leaves.
///
/// This function will then calculate the inner nodes above each leaf for 8 layers, as well as
/// the "leaves" for the next 8-deep subtree, so this function can effectively be chained into
/// itself.
///
/// # Panics
/// With debug assertions on, this function panics under invalid inputs: if `leaves` contains
/// more entries than can fit in a depth-8 subtree, if `leaves` contains leaves belonging to
/// different depth-8 subtrees, if `bottom_depth` is lower in the tree than the specified
/// maximum depth (`DEPTH`), or if `leaves` is not sorted.
#[cfg(feature = "concurrent")]
pub(crate) fn build_subtree(
mut leaves: Vec<SubtreeLeaf>,
tree_depth: u8,
bottom_depth: u8,
) -> (UnorderedMap<NodeIndex, InnerNode>, SubtreeLeaf) {
debug_assert!(bottom_depth <= tree_depth);
debug_assert!(Integer::is_multiple_of(&bottom_depth, &SUBTREE_DEPTH));
debug_assert!(leaves.len() <= usize::pow(2, SUBTREE_DEPTH as u32));
let subtree_root = bottom_depth - SUBTREE_DEPTH;
let mut inner_nodes: UnorderedMap<NodeIndex, InnerNode> = Default::default();
let mut next_leaves: Vec<SubtreeLeaf> = Vec::with_capacity(leaves.len() / 2);
for next_depth in (subtree_root..bottom_depth).rev() {
debug_assert!(next_depth <= bottom_depth);
// `next_depth` is the stuff we're making.
// `current_depth` is the stuff we have.
let current_depth = next_depth + 1;
let mut iter = leaves.drain(..).peekable();
while let Some(first) = iter.next() {
// On non-continuous iterations, including the first iteration, `first_column` may
// be a left or right node. On subsequent continuous iterations, we will always call
// `iter.next()` twice.
// On non-continuous iterations (including the very first iteration), this column
// could be either on the left or the right. If the next iteration is not
// discontinuous with our right node, then the next iteration's
let is_right = first.col.is_odd();
let (left, right) = if is_right {
// Discontinuous iteration: we have no left node, so it must be empty.
let left = SubtreeLeaf {
col: first.col - 1,
hash: *EmptySubtreeRoots::entry(tree_depth, current_depth),
};
let right = first;
(left, right)
} else {
let left = first;
let right_col = first.col + 1;
let right = match iter.peek().copied() {
Some(SubtreeLeaf { col, .. }) if col == right_col => {
// Our inputs must be sorted.
debug_assert!(left.col <= col);
// The next leaf in the iterator is our sibling. Use it and consume it!
iter.next().unwrap()
},
// Otherwise, the leaves don't contain our sibling, so our sibling must be
// empty.
_ => SubtreeLeaf {
col: right_col,
hash: *EmptySubtreeRoots::entry(tree_depth, current_depth),
},
};
(left, right)
};
let index = NodeIndex::new_unchecked(current_depth, left.col).parent();
let node = InnerNode { left: left.hash, right: right.hash };
let hash = node.hash();
let &equivalent_empty_hash = EmptySubtreeRoots::entry(tree_depth, next_depth);
// If this hash is empty, then it doesn't become a new inner node, nor does it count
// as a leaf for the next depth.
if hash != equivalent_empty_hash {
inner_nodes.insert(index, node);
next_leaves.push(SubtreeLeaf { col: index.value(), hash });
}
}
// Stop borrowing `leaves`, so we can swap it.
// The iterator is empty at this point anyway.
drop(iter);
// After each depth, consider the stuff we just made the new "leaves", and empty the
// other collection.
mem::swap(&mut leaves, &mut next_leaves);
}
debug_assert_eq!(leaves.len(), 1);
let root = leaves.pop().unwrap();
(inner_nodes, root)
}
#[cfg(feature = "internal")]
pub fn build_subtree_for_bench(
leaves: Vec<SubtreeLeaf>,
tree_depth: u8,
bottom_depth: u8,
) -> (UnorderedMap<NodeIndex, InnerNode>, SubtreeLeaf) {
build_subtree(leaves, tree_depth, bottom_depth)
}

View file

@ -1,14 +1,16 @@
use alloc::{collections::BTreeMap, vec::Vec}; use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use rand::{prelude::IteratorRandom, thread_rng, Rng};
use super::{ use super::{
build_subtree, InnerNode, LeafIndex, NodeIndex, PairComputations, SmtLeaf, SparseMerkleTree, build_subtree, InnerNode, LeafIndex, NodeIndex, NodeMutations, PairComputations, RpoDigest,
SubtreeLeaf, SubtreeLeavesIter, COLS_PER_SUBTREE, SUBTREE_DEPTH, Smt, SmtLeaf, SparseMerkleTree, SubtreeLeaf, SubtreeLeavesIter, UnorderedMap, COLS_PER_SUBTREE,
}; SMT_DEPTH, SUBTREE_DEPTH,
use crate::{
hash::rpo::RpoDigest,
merkle::{Smt, SMT_DEPTH},
Felt, Word, ONE,
}; };
use crate::{merkle::smt::Felt, Word, EMPTY_WORD, ONE};
fn smtleaf_to_subtree_leaf(leaf: &SmtLeaf) -> SubtreeLeaf { fn smtleaf_to_subtree_leaf(leaf: &SmtLeaf) -> SubtreeLeaf {
SubtreeLeaf { SubtreeLeaf {
@ -32,9 +34,7 @@ fn test_sorted_pairs_to_leaves() {
// Subtree 2. Another normal leaf. // Subtree 2. Another normal leaf.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(1024)]), [ONE; 4]), (RpoDigest::new([ONE, ONE, ONE, Felt::new(1024)]), [ONE; 4]),
]; ];
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let control_leaves: Vec<SmtLeaf> = { let control_leaves: Vec<SmtLeaf> = {
let mut entries_iter = entries.iter().cloned(); let mut entries_iter = entries.iter().cloned();
let mut next_entry = || entries_iter.next().unwrap(); let mut next_entry = || entries_iter.next().unwrap();
@ -52,11 +52,9 @@ fn test_sorted_pairs_to_leaves() {
assert_eq!(entries_iter.next(), None); assert_eq!(entries_iter.next(), None);
control_leaves control_leaves
}; };
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = { let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = {
let mut control_leaves_iter = control_leaves.iter(); let mut control_leaves_iter = control_leaves.iter();
let mut next_leaf = || control_leaves_iter.next().unwrap(); let mut next_leaf = || control_leaves_iter.next().unwrap();
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = [ let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = [
// Subtree 0. // Subtree 0.
vec![next_leaf(), next_leaf(), next_leaf()], vec![next_leaf(), next_leaf(), next_leaf()],
@ -70,22 +68,18 @@ fn test_sorted_pairs_to_leaves() {
assert_eq!(control_leaves_iter.next(), None); assert_eq!(control_leaves_iter.next(), None);
control_subtree_leaves control_subtree_leaves
}; };
let subtrees: PairComputations<u64, SmtLeaf> = Smt::sorted_pairs_to_leaves(entries); let subtrees: PairComputations<u64, SmtLeaf> = Smt::sorted_pairs_to_leaves(entries);
// This will check that the hashes, columns, and subtree assignments all match. // This will check that the hashes, columns, and subtree assignments all match.
assert_eq!(subtrees.leaves, control_subtree_leaves); assert_eq!(subtrees.leaves, control_subtree_leaves);
// Flattening and re-separating out the leaves into subtrees should have the same result. // Flattening and re-separating out the leaves into subtrees should have the same result.
let mut all_leaves: Vec<SubtreeLeaf> = subtrees.leaves.clone().into_iter().flatten().collect(); let mut all_leaves: Vec<SubtreeLeaf> = subtrees.leaves.clone().into_iter().flatten().collect();
let re_grouped: Vec<Vec<_>> = SubtreeLeavesIter::from_leaves(&mut all_leaves).collect(); let re_grouped: Vec<Vec<_>> = SubtreeLeavesIter::from_leaves(&mut all_leaves).collect();
assert_eq!(subtrees.leaves, re_grouped); assert_eq!(subtrees.leaves, re_grouped);
// Then finally we might as well check the computed leaf nodes too. // Then finally we might as well check the computed leaf nodes too.
let control_leaves: BTreeMap<u64, SmtLeaf> = control let control_leaves: BTreeMap<u64, SmtLeaf> = control
.leaves() .leaves()
.map(|(index, value)| (index.index.value(), value.clone())) .map(|(index, value)| (index.index.value(), value.clone()))
.collect(); .collect();
for (column, test_leaf) in subtrees.nodes { for (column, test_leaf) in subtrees.nodes {
if test_leaf.is_empty() { if test_leaf.is_empty() {
continue; continue;
@ -96,7 +90,6 @@ fn test_sorted_pairs_to_leaves() {
assert_eq!(control_leaf, &test_leaf); assert_eq!(control_leaf, &test_leaf);
} }
} }
// Helper for the below tests. // Helper for the below tests.
fn generate_entries(pair_count: u64) -> Vec<(RpoDigest, Word)> { fn generate_entries(pair_count: u64) -> Vec<(RpoDigest, Word)> {
(0..pair_count) (0..pair_count)
@ -108,23 +101,41 @@ fn generate_entries(pair_count: u64) -> Vec<(RpoDigest, Word)> {
}) })
.collect() .collect()
} }
fn generate_updates(entries: Vec<(RpoDigest, Word)>, updates: usize) -> Vec<(RpoDigest, Word)> {
const REMOVAL_PROBABILITY: f64 = 0.2;
let mut rng = thread_rng();
// Assertion to ensure input keys are unique
assert!(
entries.iter().map(|(key, _)| key).collect::<BTreeSet<_>>().len() == entries.len(),
"Input entries contain duplicate keys!"
);
let mut sorted_entries: Vec<(RpoDigest, Word)> = entries
.into_iter()
.choose_multiple(&mut rng, updates)
.into_iter()
.map(|(key, _)| {
let value = if rng.gen_bool(REMOVAL_PROBABILITY) {
EMPTY_WORD
} else {
[ONE, ONE, ONE, Felt::new(rng.gen())]
};
(key, value)
})
.collect();
sorted_entries.sort_by_key(|(key, _)| Smt::key_to_leaf_index(key).value());
sorted_entries
}
#[test] #[test]
fn test_single_subtree() { fn test_single_subtree() {
// A single subtree's worth of leaves. // A single subtree's worth of leaves.
const PAIR_COUNT: u64 = COLS_PER_SUBTREE; const PAIR_COUNT: u64 = COLS_PER_SUBTREE;
let entries = generate_entries(PAIR_COUNT); let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
// `entries` should already be sorted by nature of how we constructed it. // `entries` should already be sorted by nature of how we constructed it.
let leaves = Smt::sorted_pairs_to_leaves(entries).leaves; let leaves = Smt::sorted_pairs_to_leaves(entries).leaves;
let leaves = leaves.into_iter().next().unwrap(); let leaves = leaves.into_iter().next().unwrap();
let (first_subtree, subtree_root) = build_subtree(leaves, SMT_DEPTH, SMT_DEPTH); let (first_subtree, subtree_root) = build_subtree(leaves, SMT_DEPTH, SMT_DEPTH);
assert!(!first_subtree.is_empty()); assert!(!first_subtree.is_empty());
// The inner nodes computed from that subtree should match the nodes in our control tree. // The inner nodes computed from that subtree should match the nodes in our control tree.
for (index, node) in first_subtree.into_iter() { for (index, node) in first_subtree.into_iter() {
let control = control.get_inner_node(index); let control = control.get_inner_node(index);
@ -133,7 +144,6 @@ fn test_single_subtree() {
"subtree-computed node at index {index:?} does not match control", "subtree-computed node at index {index:?} does not match control",
); );
} }
// The root returned should also match the equivalent node in the control tree. // The root returned should also match the equivalent node in the control tree.
let control_root_index = let control_root_index =
NodeIndex::new(SMT_DEPTH - SUBTREE_DEPTH, subtree_root.col).expect("Valid root index"); NodeIndex::new(SMT_DEPTH - SUBTREE_DEPTH, subtree_root.col).expect("Valid root index");
@ -144,7 +154,6 @@ fn test_single_subtree() {
"Subtree-computed root at index {control_root_index:?} does not match control" "Subtree-computed root at index {control_root_index:?} does not match control"
); );
} }
// Test that not just can we compute a subtree correctly, but we can feed the results of one // Test that not just can we compute a subtree correctly, but we can feed the results of one
// subtree into computing another. In other words, test that `build_subtree()` is correctly // subtree into computing another. In other words, test that `build_subtree()` is correctly
// composable. // composable.
@ -152,30 +161,22 @@ fn test_single_subtree() {
fn test_two_subtrees() { fn test_two_subtrees() {
// Two subtrees' worth of leaves. // Two subtrees' worth of leaves.
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 2; const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 2;
let entries = generate_entries(PAIR_COUNT); let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let PairComputations { leaves, .. } = Smt::sorted_pairs_to_leaves(entries); let PairComputations { leaves, .. } = Smt::sorted_pairs_to_leaves(entries);
// With two subtrees' worth of leaves, we should have exactly two subtrees. // With two subtrees' worth of leaves, we should have exactly two subtrees.
let [first, second]: [Vec<_>; 2] = leaves.try_into().unwrap(); let [first, second]: [Vec<_>; 2] = leaves.try_into().unwrap();
assert_eq!(first.len() as u64, PAIR_COUNT / 2); assert_eq!(first.len() as u64, PAIR_COUNT / 2);
assert_eq!(first.len(), second.len()); assert_eq!(first.len(), second.len());
let mut current_depth = SMT_DEPTH; let mut current_depth = SMT_DEPTH;
let mut next_leaves: Vec<SubtreeLeaf> = Default::default(); let mut next_leaves: Vec<SubtreeLeaf> = Default::default();
let (first_nodes, first_root) = build_subtree(first, SMT_DEPTH, current_depth); let (first_nodes, first_root) = build_subtree(first, SMT_DEPTH, current_depth);
next_leaves.push(first_root); next_leaves.push(first_root);
let (second_nodes, second_root) = build_subtree(second, SMT_DEPTH, current_depth); let (second_nodes, second_root) = build_subtree(second, SMT_DEPTH, current_depth);
next_leaves.push(second_root); next_leaves.push(second_root);
// All new inner nodes + the new subtree-leaves should be 512, for one depth-cycle. // All new inner nodes + the new subtree-leaves should be 512, for one depth-cycle.
let total_computed = first_nodes.len() + second_nodes.len() + next_leaves.len(); let total_computed = first_nodes.len() + second_nodes.len() + next_leaves.len();
assert_eq!(total_computed as u64, PAIR_COUNT); assert_eq!(total_computed as u64, PAIR_COUNT);
// Verify the computed nodes of both subtrees. // Verify the computed nodes of both subtrees.
let computed_nodes = first_nodes.clone().into_iter().chain(second_nodes); let computed_nodes = first_nodes.clone().into_iter().chain(second_nodes);
for (index, test_node) in computed_nodes { for (index, test_node) in computed_nodes {
@ -185,13 +186,10 @@ fn test_two_subtrees() {
"subtree-computed node at index {index:?} does not match control", "subtree-computed node at index {index:?} does not match control",
); );
} }
current_depth -= SUBTREE_DEPTH; current_depth -= SUBTREE_DEPTH;
let (nodes, root_leaf) = build_subtree(next_leaves, SMT_DEPTH, current_depth); let (nodes, root_leaf) = build_subtree(next_leaves, SMT_DEPTH, current_depth);
assert_eq!(nodes.len(), SUBTREE_DEPTH as usize); assert_eq!(nodes.len(), SUBTREE_DEPTH as usize);
assert_eq!(root_leaf.col, 0); assert_eq!(root_leaf.col, 0);
for (index, test_node) in nodes { for (index, test_node) in nodes {
let control_node = control.get_inner_node(index); let control_node = control.get_inner_node(index);
assert_eq!( assert_eq!(
@ -199,30 +197,23 @@ fn test_two_subtrees() {
"subtree-computed node at index {index:?} does not match control", "subtree-computed node at index {index:?} does not match control",
); );
} }
let index = NodeIndex::new(current_depth - SUBTREE_DEPTH, root_leaf.col).unwrap(); let index = NodeIndex::new(current_depth - SUBTREE_DEPTH, root_leaf.col).unwrap();
let control_root = control.get_inner_node(index).hash(); let control_root = control.get_inner_node(index).hash();
assert_eq!(control_root, root_leaf.hash, "Root mismatch"); assert_eq!(control_root, root_leaf.hash, "Root mismatch");
} }
#[test] #[test]
fn test_singlethreaded_subtrees() { fn test_singlethreaded_subtrees() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64; const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT); let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default(); let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let PairComputations { let PairComputations {
leaves: mut leaf_subtrees, leaves: mut leaf_subtrees,
nodes: test_leaves, nodes: test_leaves,
} = Smt::sorted_pairs_to_leaves(entries); } = Smt::sorted_pairs_to_leaves(entries);
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() { for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
// There's no flat_map_unzip(), so this is the best we can do. // There's no flat_map_unzip(), so this is the best we can do.
let (nodes, mut subtree_roots): (Vec<BTreeMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees let (nodes, mut subtree_roots): (Vec<UnorderedMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees
.into_iter() .into_iter()
.enumerate() .enumerate()
.map(|(i, subtree)| { .map(|(i, subtree)| {
@ -235,10 +226,8 @@ fn test_singlethreaded_subtrees() {
!subtree.is_empty(), !subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!", "subtree {i} at bottom-depth {current_depth} is empty!",
); );
// Do actual things. // Do actual things.
let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth); let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth);
// Post-assertions. // Post-assertions.
for (&index, test_node) in nodes.iter() { for (&index, test_node) in nodes.iter() {
let control_node = control.get_inner_node(index); let control_node = control.get_inner_node(index);
@ -248,19 +237,14 @@ fn test_singlethreaded_subtrees() {
current_depth, i, index, current_depth, i, index,
); );
} }
(nodes, subtree_root) (nodes, subtree_root)
}) })
.unzip(); .unzip();
// Update state between each depth iteration. // Update state between each depth iteration.
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect(); leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten()); accumulated_nodes.extend(nodes.into_iter().flatten());
assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}"); assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}");
} }
// Make sure the true leaves match, first checking length and then checking each individual // Make sure the true leaves match, first checking length and then checking each individual
// leaf. // leaf.
let control_leaves: BTreeMap<_, _> = control.leaves().collect(); let control_leaves: BTreeMap<_, _> = control.leaves().collect();
@ -272,7 +256,6 @@ fn test_singlethreaded_subtrees() {
let &control_leaf = control_leaves.get(&index).unwrap(); let &control_leaf = control_leaves.get(&index).unwrap();
assert_eq!(test_leaf, control_leaf, "test leaf at column {col} does not match control"); assert_eq!(test_leaf, control_leaf, "test leaf at column {col} does not match control");
} }
// Make sure the inner nodes match, checking length first and then each individual leaf. // Make sure the inner nodes match, checking length first and then each individual leaf.
let control_nodes_len = control.inner_nodes().count(); let control_nodes_len = control.inner_nodes().count();
let test_nodes_len = accumulated_nodes.len(); let test_nodes_len = accumulated_nodes.len();
@ -281,20 +264,16 @@ fn test_singlethreaded_subtrees() {
let control_node = control.get_inner_node(index); let control_node = control.get_inner_node(index);
assert_eq!(test_node, control_node, "test node does not match control at {index:?}"); assert_eq!(test_node, control_node, "test node does not match control at {index:?}");
} }
// After the last iteration of the above for loop, we should have the new root node actually // After the last iteration of the above for loop, we should have the new root node actually
// in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from // in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from
// `build_subtree()`. So let's check both! // `build_subtree()`. So let's check both!
let control_root = control.get_inner_node(NodeIndex::root()); let control_root = control.get_inner_node(NodeIndex::root());
// That for loop should have left us with only one leaf subtree... // That for loop should have left us with only one leaf subtree...
let [leaf_subtree]: [Vec<_>; 1] = leaf_subtrees.try_into().unwrap(); let [leaf_subtree]: [Vec<_>; 1] = leaf_subtrees.try_into().unwrap();
// which itself contains only one 'leaf'... // which itself contains only one 'leaf'...
let [root_leaf]: [SubtreeLeaf; 1] = leaf_subtree.try_into().unwrap(); let [root_leaf]: [SubtreeLeaf; 1] = leaf_subtree.try_into().unwrap();
// which matches the expected root. // which matches the expected root.
assert_eq!(control.root(), root_leaf.hash); assert_eq!(control.root(), root_leaf.hash);
// Likewise `accumulated_nodes` should contain a node at the root index... // Likewise `accumulated_nodes` should contain a node at the root index...
assert!(accumulated_nodes.contains_key(&NodeIndex::root())); assert!(accumulated_nodes.contains_key(&NodeIndex::root()));
// and it should match our actual root. // and it should match our actual root.
@ -303,28 +282,20 @@ fn test_singlethreaded_subtrees() {
// And of course the root we got from each place should match. // And of course the root we got from each place should match.
assert_eq!(control.root(), root_leaf.hash); assert_eq!(control.root(), root_leaf.hash);
} }
/// The parallel version of `test_singlethreaded_subtree()`. /// The parallel version of `test_singlethreaded_subtree()`.
#[test] #[test]
#[cfg(feature = "concurrent")]
fn test_multithreaded_subtrees() { fn test_multithreaded_subtrees() {
use rayon::prelude::*; use rayon::prelude::*;
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64; const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT); let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default(); let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let PairComputations { let PairComputations {
leaves: mut leaf_subtrees, leaves: mut leaf_subtrees,
nodes: test_leaves, nodes: test_leaves,
} = Smt::sorted_pairs_to_leaves(entries); } = Smt::sorted_pairs_to_leaves(entries);
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() { for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
let (nodes, mut subtree_roots): (Vec<BTreeMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees let (nodes, mut subtree_roots): (Vec<UnorderedMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees
.into_par_iter() .into_par_iter()
.enumerate() .enumerate()
.map(|(i, subtree)| { .map(|(i, subtree)| {
@ -337,9 +308,7 @@ fn test_multithreaded_subtrees() {
!subtree.is_empty(), !subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!", "subtree {i} at bottom-depth {current_depth} is empty!",
); );
let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth); let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth);
// Post-assertions. // Post-assertions.
for (&index, test_node) in nodes.iter() { for (&index, test_node) in nodes.iter() {
let control_node = control.get_inner_node(index); let control_node = control.get_inner_node(index);
@ -349,17 +318,13 @@ fn test_multithreaded_subtrees() {
current_depth, i, index, current_depth, i, index,
); );
} }
(nodes, subtree_root) (nodes, subtree_root)
}) })
.unzip(); .unzip();
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect(); leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten()); accumulated_nodes.extend(nodes.into_iter().flatten());
assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}"); assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}");
} }
// Make sure the true leaves match, checking length first and then each individual leaf. // Make sure the true leaves match, checking length first and then each individual leaf.
let control_leaves: BTreeMap<_, _> = control.leaves().collect(); let control_leaves: BTreeMap<_, _> = control.leaves().collect();
let control_leaves_len = control_leaves.len(); let control_leaves_len = control_leaves.len();
@ -370,7 +335,6 @@ fn test_multithreaded_subtrees() {
let &control_leaf = control_leaves.get(&index).unwrap(); let &control_leaf = control_leaves.get(&index).unwrap();
assert_eq!(test_leaf, control_leaf); assert_eq!(test_leaf, control_leaf);
} }
// Make sure the inner nodes match, checking length first and then each individual leaf. // Make sure the inner nodes match, checking length first and then each individual leaf.
let control_nodes_len = control.inner_nodes().count(); let control_nodes_len = control.inner_nodes().count();
let test_nodes_len = accumulated_nodes.len(); let test_nodes_len = accumulated_nodes.len();
@ -379,20 +343,16 @@ fn test_multithreaded_subtrees() {
let control_node = control.get_inner_node(index); let control_node = control.get_inner_node(index);
assert_eq!(test_node, control_node, "test node does not match control at {index:?}"); assert_eq!(test_node, control_node, "test node does not match control at {index:?}");
} }
// After the last iteration of the above for loop, we should have the new root node actually // After the last iteration of the above for loop, we should have the new root node actually
// in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from // in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from
// `build_subtree()`. So let's check both! // `build_subtree()`. So let's check both!
let control_root = control.get_inner_node(NodeIndex::root()); let control_root = control.get_inner_node(NodeIndex::root());
// That for loop should have left us with only one leaf subtree... // That for loop should have left us with only one leaf subtree...
let [leaf_subtree]: [_; 1] = leaf_subtrees.try_into().unwrap(); let [leaf_subtree]: [_; 1] = leaf_subtrees.try_into().unwrap();
// which itself contains only one 'leaf'... // which itself contains only one 'leaf'...
let [root_leaf]: [_; 1] = leaf_subtree.try_into().unwrap(); let [root_leaf]: [_; 1] = leaf_subtree.try_into().unwrap();
// which matches the expected root. // which matches the expected root.
assert_eq!(control.root(), root_leaf.hash); assert_eq!(control.root(), root_leaf.hash);
// Likewise `accumulated_nodes` should contain a node at the root index... // Likewise `accumulated_nodes` should contain a node at the root index...
assert!(accumulated_nodes.contains_key(&NodeIndex::root())); assert!(accumulated_nodes.contains_key(&NodeIndex::root()));
// and it should match our actual root. // and it should match our actual root.
@ -401,17 +361,86 @@ fn test_multithreaded_subtrees() {
// And of course the root we got from each place should match. // And of course the root we got from each place should match.
assert_eq!(control.root(), root_leaf.hash); assert_eq!(control.root(), root_leaf.hash);
} }
#[test] #[test]
#[cfg(feature = "concurrent")] fn test_with_entries_concurrent() {
fn test_with_entries_parallel() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64; const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT); let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap(); let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let smt = Smt::with_entries(entries.clone()).unwrap(); let smt = Smt::with_entries(entries.clone()).unwrap();
assert_eq!(smt.root(), control.root()); assert_eq!(smt.root(), control.root());
assert_eq!(smt, control); assert_eq!(smt, control);
} }
/// Concurrent mutations
#[test]
fn test_singlethreaded_subtree_mutations() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let updates = generate_updates(entries.clone(), 1000);
let tree = Smt::with_entries_sequential(entries.clone()).unwrap();
let control = tree.compute_mutations_sequential(updates.clone());
let mut node_mutations = NodeMutations::default();
let (mut subtree_leaves, new_pairs) = tree.sorted_pairs_to_mutated_subtree_leaves(updates);
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
// There's no flat_map_unzip(), so this is the best we can do.
let (mutations_per_subtree, mut subtree_roots): (Vec<_>, Vec<_>) = subtree_leaves
.into_iter()
.enumerate()
.map(|(i, subtree)| {
// Pre-assertions.
assert!(
subtree.is_sorted(),
"subtree {i} at bottom-depth {current_depth} is not sorted",
);
assert!(
!subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!",
);
// Calculate the mutations for this subtree.
let (mutations_per_subtree, subtree_root) =
tree.build_subtree_mutations(subtree, SMT_DEPTH, current_depth);
// Check that the mutations match the control tree.
for (&index, mutation) in mutations_per_subtree.iter() {
let control_mutation = control.node_mutations().get(&index).unwrap();
assert_eq!(
control_mutation, mutation,
"depth {} subtree {}: mutation does not match control at index {:?}",
current_depth, i, index,
);
}
(mutations_per_subtree, subtree_root)
})
.unzip();
subtree_leaves = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
node_mutations.extend(mutations_per_subtree.into_iter().flatten());
assert!(!subtree_leaves.is_empty(), "on depth {current_depth}");
}
let [subtree]: [Vec<_>; 1] = subtree_leaves.try_into().unwrap();
let [root_leaf]: [SubtreeLeaf; 1] = subtree.try_into().unwrap();
// Check that the new root matches the control.
assert_eq!(control.new_root, root_leaf.hash);
// Check that the node mutations match the control.
assert_eq!(control.node_mutations().len(), node_mutations.len());
for (&index, mutation) in control.node_mutations().iter() {
let test_mutation = node_mutations.get(&index).unwrap();
assert_eq!(test_mutation, mutation);
}
// Check that the new pairs match the control
assert_eq!(control.new_pairs.len(), new_pairs.len());
for (&key, &value) in control.new_pairs.iter() {
let test_value = new_pairs.get(&key).unwrap();
assert_eq!(test_value, &value);
}
}
#[test]
fn test_compute_mutations_parallel() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let tree = Smt::with_entries(entries.clone()).unwrap();
let updates = generate_updates(entries, 1000);
let control = tree.compute_mutations_sequential(updates.clone());
let mutations = tree.compute_mutations(updates);
assert_eq!(mutations.root(), control.root());
assert_eq!(mutations.old_root(), control.old_root());
assert_eq!(mutations.node_mutations(), control.node_mutations());
assert_eq!(mutations.new_pairs(), control.new_pairs());
}

View file

@ -1,4 +1,4 @@
use alloc::{collections::BTreeSet, string::ToString, vec::Vec}; use alloc::{string::ToString, vec::Vec};
use super::{ use super::{
EmptySubtreeRoots, Felt, InnerNode, InnerNodeInfo, InnerNodes, LeafIndex, MerkleError, EmptySubtreeRoots, Felt, InnerNode, InnerNodeInfo, InnerNodes, LeafIndex, MerkleError,
@ -15,6 +15,12 @@ mod proof;
pub use proof::SmtProof; pub use proof::SmtProof;
use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable}; use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
// Concurrent implementation
#[cfg(feature = "concurrent")]
mod concurrent;
#[cfg(feature = "internal")]
pub use concurrent::{build_subtree_for_bench, SubtreeLeaf};
#[cfg(test)] #[cfg(test)]
mod tests; mod tests;
@ -81,23 +87,7 @@ impl Smt {
) -> Result<Self, MerkleError> { ) -> Result<Self, MerkleError> {
#[cfg(feature = "concurrent")] #[cfg(feature = "concurrent")]
{ {
let mut seen_keys = BTreeSet::new(); Self::with_entries_concurrent(entries)
let entries: Vec<_> = entries
.into_iter()
.map(|(key, value)| {
if seen_keys.insert(key) {
Ok((key, value))
} else {
Err(MerkleError::DuplicateValuesForIndex(
LeafIndex::<SMT_DEPTH>::from(key).value(),
))
}
})
.collect::<Result<_, _>>()?;
if entries.is_empty() {
return Ok(Self::default());
}
<Self as SparseMerkleTree<SMT_DEPTH>>::with_entries_par(entries)
} }
#[cfg(not(feature = "concurrent"))] #[cfg(not(feature = "concurrent"))]
{ {
@ -112,9 +102,12 @@ impl Smt {
/// ///
/// # Errors /// # Errors
/// Returns an error if the provided entries contain multiple values for the same key. /// Returns an error if the provided entries contain multiple values for the same key.
pub fn with_entries_sequential( #[cfg(any(not(feature = "concurrent"), test))]
fn with_entries_sequential(
entries: impl IntoIterator<Item = (RpoDigest, Word)>, entries: impl IntoIterator<Item = (RpoDigest, Word)>,
) -> Result<Self, MerkleError> { ) -> Result<Self, MerkleError> {
use alloc::collections::BTreeSet;
// create an empty tree // create an empty tree
let mut tree = Self::new(); let mut tree = Self::new();
@ -252,7 +245,14 @@ impl Smt {
&self, &self,
kv_pairs: impl IntoIterator<Item = (RpoDigest, Word)>, kv_pairs: impl IntoIterator<Item = (RpoDigest, Word)>,
) -> MutationSet<SMT_DEPTH, RpoDigest, Word> { ) -> MutationSet<SMT_DEPTH, RpoDigest, Word> {
<Self as SparseMerkleTree<SMT_DEPTH>>::compute_mutations(self, kv_pairs) #[cfg(feature = "concurrent")]
{
self.compute_mutations_concurrent(kv_pairs)
}
#[cfg(not(feature = "concurrent"))]
{
<Self as SparseMerkleTree<SMT_DEPTH>>::compute_mutations(self, kv_pairs)
}
} }
/// Applies the prospective mutations computed with [`Smt::compute_mutations()`] to this tree. /// Applies the prospective mutations computed with [`Smt::compute_mutations()`] to this tree.

View file

@ -1,7 +1,6 @@
use alloc::{collections::BTreeMap, vec::Vec}; use alloc::vec::Vec;
use core::{hash::Hash, mem}; use core::hash::Hash;
use num::Integer;
use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable}; use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use super::{EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex}; use super::{EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex};
@ -11,6 +10,8 @@ use crate::{
}; };
mod full; mod full;
#[cfg(feature = "internal")]
pub use full::{build_subtree_for_bench, SubtreeLeaf};
pub use full::{Smt, SmtLeaf, SmtLeafError, SmtProof, SmtProofError, SMT_DEPTH}; pub use full::{Smt, SmtLeaf, SmtLeafError, SmtProof, SmtProofError, SMT_DEPTH};
mod simple; mod simple;
@ -75,17 +76,6 @@ pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
// PROVIDED METHODS // PROVIDED METHODS
// --------------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------------
/// Creates a new sparse Merkle tree from an existing set of key-value pairs, in parallel.
#[cfg(feature = "concurrent")]
fn with_entries_par(entries: Vec<(Self::Key, Self::Value)>) -> Result<Self, MerkleError>
where
Self: Sized,
{
let (inner_nodes, leaves) = Self::build_subtrees(entries);
let root = inner_nodes.get(&NodeIndex::root()).unwrap().hash();
Self::from_raw_parts(inner_nodes, leaves, root)
}
/// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle /// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
/// path to the leaf, as well as the leaf itself. /// path to the leaf, as well as the leaf itself.
fn open(&self, key: &Self::Key) -> Self::Opening { fn open(&self, key: &Self::Key) -> Self::Opening {
@ -178,6 +168,15 @@ pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
fn compute_mutations( fn compute_mutations(
&self, &self,
kv_pairs: impl IntoIterator<Item = (Self::Key, Self::Value)>, kv_pairs: impl IntoIterator<Item = (Self::Key, Self::Value)>,
) -> MutationSet<DEPTH, Self::Key, Self::Value> {
self.compute_mutations_sequential(kv_pairs)
}
/// Sequential version of [`SparseMerkleTree::compute_mutations()`].
/// This is the default implementation.
fn compute_mutations_sequential(
&self,
kv_pairs: impl IntoIterator<Item = (Self::Key, Self::Value)>,
) -> MutationSet<DEPTH, Self::Key, Self::Value> { ) -> MutationSet<DEPTH, Self::Key, Self::Value> {
use NodeMutation::*; use NodeMutation::*;
@ -457,118 +456,6 @@ pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
/// ///
/// The length `path` is guaranteed to be equal to `DEPTH` /// The length `path` is guaranteed to be equal to `DEPTH`
fn path_and_leaf_to_opening(path: MerklePath, leaf: Self::Leaf) -> Self::Opening; fn path_and_leaf_to_opening(path: MerklePath, leaf: Self::Leaf) -> Self::Opening;
/// Performs the initial transforms for constructing a [`SparseMerkleTree`] by composing
/// subtrees. In other words, this function takes the key-value inputs to the tree, and produces
/// the inputs to feed into [`build_subtree()`].
///
/// `pairs` *must* already be sorted **by leaf index column**, not simply sorted by key. If
/// `pairs` is not correctly sorted, the returned computations will be incorrect.
///
/// # Panics
/// With debug assertions on, this function panics if it detects that `pairs` is not correctly
/// sorted. Without debug assertions, the returned computations will be incorrect.
fn sorted_pairs_to_leaves(
pairs: Vec<(Self::Key, Self::Value)>,
) -> PairComputations<u64, Self::Leaf> {
debug_assert!(pairs.is_sorted_by_key(|(key, _)| Self::key_to_leaf_index(key).value()));
let mut accumulator: PairComputations<u64, Self::Leaf> = Default::default();
let mut accumulated_leaves: Vec<SubtreeLeaf> = Vec::with_capacity(pairs.len() / 2);
// As we iterate, we'll keep track of the kv-pairs we've seen so far that correspond to a
// single leaf. When we see a pair that's in a different leaf, we'll swap these pairs
// out and store them in our accumulated leaves.
let mut current_leaf_buffer: Vec<(Self::Key, Self::Value)> = Default::default();
let mut iter = pairs.into_iter().peekable();
while let Some((key, value)) = iter.next() {
let col = Self::key_to_leaf_index(&key).index.value();
let peeked_col = iter.peek().map(|(key, _v)| {
let index = Self::key_to_leaf_index(key);
let next_col = index.index.value();
// We panic if `pairs` is not sorted by column.
debug_assert!(next_col >= col);
next_col
});
current_leaf_buffer.push((key, value));
// If the next pair is the same column as this one, then we're done after adding this
// pair to the buffer.
if peeked_col == Some(col) {
continue;
}
// Otherwise, the next pair is a different column, or there is no next pair. Either way
// it's time to swap out our buffer.
let leaf_pairs = mem::take(&mut current_leaf_buffer);
let leaf = Self::pairs_to_leaf(leaf_pairs);
let hash = Self::hash_leaf(&leaf);
accumulator.nodes.insert(col, leaf);
accumulated_leaves.push(SubtreeLeaf { col, hash });
debug_assert!(current_leaf_buffer.is_empty());
}
// TODO: determine is there is any notable performance difference between computing
// subtree boundaries after the fact as an iterator adapter (like this), versus computing
// subtree boundaries as we go. Either way this function is only used at the beginning of a
// parallel construction, so it should not be a critical path.
accumulator.leaves = SubtreeLeavesIter::from_leaves(&mut accumulated_leaves).collect();
accumulator
}
/// Computes the raw parts for a new sparse Merkle tree from a set of key-value pairs.
///
/// `entries` need not be sorted. This function will sort them.
#[cfg(feature = "concurrent")]
fn build_subtrees(
mut entries: Vec<(Self::Key, Self::Value)>,
) -> (InnerNodes, Leaves<Self::Leaf>) {
entries.sort_by_key(|item| {
let index = Self::key_to_leaf_index(&item.0);
index.value()
});
Self::build_subtrees_from_sorted_entries(entries)
}
/// Computes the raw parts for a new sparse Merkle tree from a set of key-value pairs.
///
/// This function is mostly an implementation detail of
/// [`SparseMerkleTree::with_entries_par()`].
#[cfg(feature = "concurrent")]
fn build_subtrees_from_sorted_entries(
entries: Vec<(Self::Key, Self::Value)>,
) -> (InnerNodes, Leaves<Self::Leaf>) {
use rayon::prelude::*;
let mut accumulated_nodes: InnerNodes = Default::default();
let PairComputations {
leaves: mut leaf_subtrees,
nodes: initial_leaves,
} = Self::sorted_pairs_to_leaves(entries);
for current_depth in (SUBTREE_DEPTH..=DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
let (nodes, mut subtree_roots): (Vec<BTreeMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees
.into_par_iter()
.map(|subtree| {
debug_assert!(subtree.is_sorted());
debug_assert!(!subtree.is_empty());
let (nodes, subtree_root) = build_subtree(subtree, DEPTH, current_depth);
(nodes, subtree_root)
})
.unzip();
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten());
debug_assert!(!leaf_subtrees.is_empty());
}
(accumulated_nodes, initial_leaves)
}
} }
// INNER NODE // INNER NODE
@ -820,198 +707,3 @@ impl<const DEPTH: u8, K: Deserializable + Ord + Eq + Hash, V: Deserializable> De
}) })
} }
} }
// SUBTREES
// ================================================================================================
/// A subtree is of depth 8.
const SUBTREE_DEPTH: u8 = 8;
/// A depth-8 subtree contains 256 "columns" that can possibly be occupied.
const COLS_PER_SUBTREE: u64 = u64::pow(2, SUBTREE_DEPTH as u32);
/// Helper struct for organizing the data we care about when computing Merkle subtrees.
///
/// Note that these represet "conceptual" leaves of some subtree, not necessarily
/// the leaf type for the sparse Merkle tree.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Default)]
pub struct SubtreeLeaf {
/// The 'value' field of [`NodeIndex`]. When computing a subtree, the depth is already known.
pub col: u64,
/// The hash of the node this `SubtreeLeaf` represents.
pub hash: RpoDigest,
}
/// Helper struct to organize the return value of [`SparseMerkleTree::sorted_pairs_to_leaves()`].
#[derive(Debug, Clone)]
pub(crate) struct PairComputations<K, L> {
/// Literal leaves to be added to the sparse Merkle tree's internal mapping.
pub nodes: UnorderedMap<K, L>,
/// "Conceptual" leaves that will be used for computations.
pub leaves: Vec<Vec<SubtreeLeaf>>,
}
// Derive requires `L` to impl Default, even though we don't actually need that.
impl<K, L> Default for PairComputations<K, L> {
fn default() -> Self {
Self {
nodes: Default::default(),
leaves: Default::default(),
}
}
}
#[derive(Debug)]
struct SubtreeLeavesIter<'s> {
leaves: core::iter::Peekable<alloc::vec::Drain<'s, SubtreeLeaf>>,
}
impl<'s> SubtreeLeavesIter<'s> {
fn from_leaves(leaves: &'s mut Vec<SubtreeLeaf>) -> Self {
// TODO: determine if there is any notable performance difference between taking a Vec,
// which many need flattening first, vs storing a `Box<dyn Iterator<Item = SubtreeLeaf>>`.
// The latter may have self-referential properties that are impossible to express in purely
// safe Rust Rust.
Self { leaves: leaves.drain(..).peekable() }
}
}
impl Iterator for SubtreeLeavesIter<'_> {
type Item = Vec<SubtreeLeaf>;
/// Each `next()` collects an entire subtree.
fn next(&mut self) -> Option<Vec<SubtreeLeaf>> {
let mut subtree: Vec<SubtreeLeaf> = Default::default();
let mut last_subtree_col = 0;
while let Some(leaf) = self.leaves.peek() {
last_subtree_col = u64::max(1, last_subtree_col);
let is_exact_multiple = Integer::is_multiple_of(&last_subtree_col, &COLS_PER_SUBTREE);
let next_subtree_col = if is_exact_multiple {
u64::next_multiple_of(last_subtree_col + 1, COLS_PER_SUBTREE)
} else {
last_subtree_col.next_multiple_of(COLS_PER_SUBTREE)
};
last_subtree_col = leaf.col;
if leaf.col < next_subtree_col {
subtree.push(self.leaves.next().unwrap());
} else if subtree.is_empty() {
continue;
} else {
break;
}
}
if subtree.is_empty() {
debug_assert!(self.leaves.peek().is_none());
return None;
}
Some(subtree)
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Builds Merkle nodes from a bottom layer of "leaves" -- represented by a horizontal index and
/// the hash of the leaf at that index. `leaves` *must* be sorted by horizontal index, and
/// `leaves` must not contain more than one depth-8 subtree's worth of leaves.
///
/// This function will then calculate the inner nodes above each leaf for 8 layers, as well as
/// the "leaves" for the next 8-deep subtree, so this function can effectively be chained into
/// itself.
///
/// # Panics
/// With debug assertions on, this function panics under invalid inputs: if `leaves` contains
/// more entries than can fit in a depth-8 subtree, if `leaves` contains leaves belonging to
/// different depth-8 subtrees, if `bottom_depth` is lower in the tree than the specified
/// maximum depth (`DEPTH`), or if `leaves` is not sorted.
fn build_subtree(
mut leaves: Vec<SubtreeLeaf>,
tree_depth: u8,
bottom_depth: u8,
) -> (BTreeMap<NodeIndex, InnerNode>, SubtreeLeaf) {
debug_assert!(bottom_depth <= tree_depth);
debug_assert!(Integer::is_multiple_of(&bottom_depth, &SUBTREE_DEPTH));
debug_assert!(leaves.len() <= usize::pow(2, SUBTREE_DEPTH as u32));
let subtree_root = bottom_depth - SUBTREE_DEPTH;
let mut inner_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let mut next_leaves: Vec<SubtreeLeaf> = Vec::with_capacity(leaves.len() / 2);
for next_depth in (subtree_root..bottom_depth).rev() {
debug_assert!(next_depth <= bottom_depth);
// `next_depth` is the stuff we're making.
// `current_depth` is the stuff we have.
let current_depth = next_depth + 1;
let mut iter = leaves.drain(..).peekable();
while let Some(first) = iter.next() {
// On non-continuous iterations, including the first iteration, `first_column` may
// be a left or right node. On subsequent continuous iterations, we will always call
// `iter.next()` twice.
// On non-continuous iterations (including the very first iteration), this column
// could be either on the left or the right. If the next iteration is not
// discontinuous with our right node, then the next iteration's
let is_right = first.col.is_odd();
let (left, right) = if is_right {
// Discontinuous iteration: we have no left node, so it must be empty.
let left = SubtreeLeaf {
col: first.col - 1,
hash: *EmptySubtreeRoots::entry(tree_depth, current_depth),
};
let right = first;
(left, right)
} else {
let left = first;
let right_col = first.col + 1;
let right = match iter.peek().copied() {
Some(SubtreeLeaf { col, .. }) if col == right_col => {
// Our inputs must be sorted.
debug_assert!(left.col <= col);
// The next leaf in the iterator is our sibling. Use it and consume it!
iter.next().unwrap()
},
// Otherwise, the leaves don't contain our sibling, so our sibling must be
// empty.
_ => SubtreeLeaf {
col: right_col,
hash: *EmptySubtreeRoots::entry(tree_depth, current_depth),
},
};
(left, right)
};
let index = NodeIndex::new_unchecked(current_depth, left.col).parent();
let node = InnerNode { left: left.hash, right: right.hash };
let hash = node.hash();
let &equivalent_empty_hash = EmptySubtreeRoots::entry(tree_depth, next_depth);
// If this hash is empty, then it doesn't become a new inner node, nor does it count
// as a leaf for the next depth.
if hash != equivalent_empty_hash {
inner_nodes.insert(index, node);
next_leaves.push(SubtreeLeaf { col: index.value(), hash });
}
}
// Stop borrowing `leaves`, so we can swap it.
// The iterator is empty at this point anyway.
drop(iter);
// After each depth, consider the stuff we just made the new "leaves", and empty the
// other collection.
mem::swap(&mut leaves, &mut next_leaves);
}
debug_assert_eq!(leaves.len(), 1);
let root = leaves.pop().unwrap();
(inner_nodes, root)
}
#[cfg(feature = "internal")]
pub fn build_subtree_for_bench(
leaves: Vec<SubtreeLeaf>,
tree_depth: u8,
bottom_depth: u8,
) -> (BTreeMap<NodeIndex, InnerNode>, SubtreeLeaf) {
build_subtree(leaves, tree_depth, bottom_depth)
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests;