diff --git a/CHANGELOG.md b/CHANGELOG.md index 43e5161..48247a6 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -16,6 +16,7 @@ - Optimized duplicate key detection in `Smt::with_entries_concurrent` (#395). - [BREAKING] Moved `rand` to version `0.9` removing the `try_fill_bytes` method (#398). - [BREAKING] Increment minimum supported Rust version to 1.85 (#399). +- Added `SparseMerklePath`, a compact representation of `MerklePath` which compacts empty nodes into a bitmask (#389). ## 0.13.3 (2025-02-18) diff --git a/miden-crypto/src/merkle/mod.rs b/miden-crypto/src/merkle/mod.rs index 509de41..b6a02bc 100644 --- a/miden-crypto/src/merkle/mod.rs +++ b/miden-crypto/src/merkle/mod.rs @@ -20,6 +20,9 @@ pub use merkle_tree::{MerkleTree, path_to_text, tree_to_text}; mod path; pub use path::{MerklePath, RootPath, ValuePath}; +mod sparse_path; +pub use sparse_path::{SparseMerklePath, SparseValuePath}; + mod smt; pub use smt::{ InnerNode, LeafIndex, MutationSet, NodeMutation, PartialSmt, SMT_DEPTH, SMT_MAX_DEPTH, diff --git a/miden-crypto/src/merkle/sparse_path.rs b/miden-crypto/src/merkle/sparse_path.rs new file mode 100644 index 0000000..05a6bce --- /dev/null +++ b/miden-crypto/src/merkle/sparse_path.rs @@ -0,0 +1,813 @@ +use alloc::vec::Vec; +use core::{ + iter::{self, FusedIterator}, + num::NonZero, +}; + +use winter_utils::{Deserializable, DeserializationError, Serializable}; + +use super::{ + EmptySubtreeRoots, MerkleError, MerklePath, RpoDigest, SMT_MAX_DEPTH, ValuePath, Word, +}; + +/// A different representation of [`MerklePath`] designed for memory efficiency for Merkle paths +/// with empty nodes. +/// +/// Empty nodes in the path are stored only as their position, represented with a bitmask. A +/// maximum of 64 nodes in the path can be empty. The more nodes in a path are empty, the less +/// memory this struct will use. This type calculates empty nodes on-demand when iterated through, +/// converted to a [MerklePath], or an empty node is retrieved with [`SparseMerklePath::at_idx()`] +/// or [`SparseMerklePath::at_depth()`], which will incur overhead. +/// +/// NOTE: This type assumes that Merkle paths always span from the root of the tree to a leaf. +/// Partial paths are not supported. +#[derive(Clone, Debug, Default, PartialEq, Eq)] +#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))] +pub struct SparseMerklePath { + /// A bitmask representing empty nodes. The set bit corresponds to the depth of an empty node. + empty_nodes_mask: u64, + /// The non-empty nodes, stored in depth-order, but not contiguous across depth. + nodes: Vec, +} + +impl SparseMerklePath { + /// Constructs a sparse Merkle path from an iterator over Merkle nodes that also knows its + /// exact size (such as iterators created with [Vec::into_iter]). The iterator must be in order + /// of deepest to shallowest. + /// + /// Knowing the size is necessary to calculate the depth of the tree, which is needed to detect + /// which nodes are empty nodes. If you know the size but your iterator type is not + /// [ExactSizeIterator], use [`SparseMerklePath::from_iter_with_depth()`]. + /// + /// # Errors + /// Returns [MerkleError::DepthTooBig] if `tree_depth` is greater than [SMT_MAX_DEPTH]. + pub fn from_sized_iter(iterator: I) -> Result + where + I: IntoIterator, + { + let iterator = iterator.into_iter(); + // `iterator.len() as u8` will truncate, but not below `SMT_MAX_DEPTH`, which + // `from_iter_with_depth` checks for. + Self::from_iter_with_depth(iterator.len() as u8, iterator) + } + + /// Constructs a sparse Merkle path from a manually specified tree depth, and an iterator over + /// Merkle nodes from deepest to shallowest. + /// + /// Knowing the size is necessary to calculate the depth of the tree, which is needed to detect + /// which nodes are empty nodes. + /// + /// # Errors + /// Returns [MerkleError::DepthTooBig] if `tree_depth` is greater than [SMT_MAX_DEPTH]. + pub fn from_iter_with_depth( + tree_depth: u8, + iter: impl IntoIterator, + ) -> Result { + if tree_depth > SMT_MAX_DEPTH { + return Err(MerkleError::DepthTooBig(tree_depth as u64)); + } + + let path: Self = iter::zip(path_depth_iter(tree_depth), iter) + .map(|(depth, node)| { + let &equivalent_empty_node = EmptySubtreeRoots::entry(tree_depth, depth.get()); + let is_empty = node == equivalent_empty_node; + let node = if is_empty { None } else { Some(node) }; + + (depth, node) + }) + .collect(); + + Ok(path) + } + + /// Returns the total depth of this path, i.e., the number of nodes this path represents. + pub fn depth(&self) -> u8 { + (self.nodes.len() + self.empty_nodes_mask.count_ones() as usize) as u8 + } + + /// Get a specific node in this path at a given depth. + /// + /// The `depth` parameter is defined in terms of `self.depth()`. Merkle paths conventionally do + /// not include the root, so the shallowest depth is `1`, and the deepest depth is + /// `self.depth()`. + /// + /// # Errors + /// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this + /// path. + pub fn at_depth(&self, node_depth: NonZero) -> Result { + let node = self + .at_depth_nonempty(node_depth)? + .unwrap_or_else(|| *EmptySubtreeRoots::entry(self.depth(), node_depth.get())); + + Ok(node) + } + + /// Get a specific non-empty node in this path at a given depth, or `None` if the specified + /// node is an empty node. + /// + /// # Errors + /// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this + /// path. + pub fn at_depth_nonempty( + &self, + node_depth: NonZero, + ) -> Result, MerkleError> { + if node_depth.get() > self.depth() { + return Err(MerkleError::DepthTooBig(node_depth.get().into())); + } + + if self.is_depth_empty(node_depth) { + return Ok(None); + } + + // Our index needs to account for all the empty nodes that aren't in `self.nodes`. + let nonempty_index = self.get_nonempty_index(node_depth); + + Ok(Some(self.nodes[nonempty_index])) + } + + /// Returns the path node at the specified index, or [None] if the index is out of bounds. + /// + /// The node at index 0 is the deepest part of the path. + /// + /// ``` + /// # use core::num::NonZero; + /// # use miden_crypto::{ZERO, ONE, hash::rpo::RpoDigest, merkle::SparseMerklePath}; + /// # let zero = RpoDigest::new([ZERO; 4]); + /// # let one = RpoDigest::new([ONE; 4]); + /// # let sparse_path = SparseMerklePath::from_sized_iter(vec![zero, one, one, zero]).unwrap(); + /// let depth = NonZero::new(sparse_path.depth()).unwrap(); + /// assert_eq!( + /// sparse_path.at_idx(0).unwrap(), + /// sparse_path.at_depth(depth).unwrap(), + /// ); + /// ``` + pub fn at_idx(&self, index: usize) -> Option { + // If this overflows *or* if the depth is zero then the index was out of bounds. + let depth = NonZero::new(u8::checked_sub(self.depth(), index as u8)?)?; + self.at_depth(depth).ok() + } + + // PROVIDERS + // ============================================================================================ + + /// Constructs a borrowing iterator over the nodes in this path. + pub fn iter(&self) -> impl ExactSizeIterator { + self.into_iter() + } + + // PRIVATE HELPERS + // ============================================================================================ + + const fn bitmask_for_depth(node_depth: NonZero) -> u64 { + // - 1 because paths do not include the root. + 1 << (node_depth.get() - 1) + } + + const fn is_depth_empty(&self, node_depth: NonZero) -> bool { + (self.empty_nodes_mask & Self::bitmask_for_depth(node_depth)) != 0 + } + + fn get_nonempty_index(&self, node_depth: NonZero) -> usize { + let bit_index = node_depth.get() - 1; + let without_shallower = self.empty_nodes_mask >> bit_index; + let empty_deeper = without_shallower.count_ones() as usize; + // The vec index we would use if we didn't have any empty nodes to account for... + let normal_index = (self.depth() - node_depth.get()) as usize; + // subtracted by the number of empty nodes that are deeper than us. + normal_index - empty_deeper + } +} + +// SERIALIZATION +// ================================================================================================ + +impl Serializable for SparseMerklePath { + fn write_into(&self, target: &mut W) { + target.write_u8(self.depth()); + target.write_u64(self.empty_nodes_mask); + target.write_many(&self.nodes); + } +} + +impl Deserializable for SparseMerklePath { + fn read_from( + source: &mut R, + ) -> Result { + let depth = source.read_u8()?; + let empty_nodes_mask = source.read_u64()?; + let count = depth as u32 - empty_nodes_mask.count_ones(); + let nodes = source.read_many::(count as usize)?; + Ok(Self { empty_nodes_mask, nodes }) + } +} + +// CONVERSIONS +// ================================================================================================ + +impl From for MerklePath { + fn from(sparse_path: SparseMerklePath) -> Self { + MerklePath::from_iter(sparse_path) + } +} + +/// # Errors +/// +/// This conversion returns [MerkleError::DepthTooBig] if the path length is greater than +/// [`SMT_MAX_DEPTH`]. +impl TryFrom for SparseMerklePath { + type Error = MerkleError; + + fn try_from(path: MerklePath) -> Result { + SparseMerklePath::from_sized_iter(path) + } +} + +impl From for Vec { + fn from(path: SparseMerklePath) -> Self { + Vec::from_iter(path) + } +} + +// ITERATORS +// ================================================================================================ + +/// Contructs a [SparseMerklePath] out of an iterator of optional nodes, where `None` indicates an +/// empty node. +impl FromIterator<(NonZero, Option)> for SparseMerklePath { + fn from_iter(iter: I) -> SparseMerklePath + where + I: IntoIterator, Option)>, + { + let mut empty_nodes_mask: u64 = 0; + let mut nodes: Vec = Default::default(); + + for (depth, node) in iter { + match node { + Some(node) => nodes.push(node), + None => empty_nodes_mask |= Self::bitmask_for_depth(depth), + } + } + + SparseMerklePath { nodes, empty_nodes_mask } + } +} + +impl<'p> IntoIterator for &'p SparseMerklePath { + type Item = as Iterator>::Item; + type IntoIter = SparseMerklePathIter<'p>; + + fn into_iter(self) -> SparseMerklePathIter<'p> { + let tree_depth = self.depth(); + SparseMerklePathIter { path: self, next_depth: tree_depth } + } +} + +/// Borrowing iterator for [`SparseMerklePath`]. +pub struct SparseMerklePathIter<'p> { + /// The "inner" value we're iterating over. + path: &'p SparseMerklePath, + + /// The depth a `next()` call will get. `next_depth == 0` indicates that the iterator has been + /// exhausted. + next_depth: u8, +} + +impl Iterator for SparseMerklePathIter<'_> { + type Item = RpoDigest; + + fn next(&mut self) -> Option { + let this_depth = self.next_depth; + // Paths don't include the root, so if `this_depth` is 0 then we keep returning `None`. + let this_depth = NonZero::new(this_depth)?; + self.next_depth = this_depth.get() - 1; + + // `this_depth` is only ever decreasing, so it can't ever exceed `self.path.depth()`. + let node = self.path.at_depth(this_depth).unwrap(); + Some(node) + } + + // SparseMerkleIter always knows its exact size. + fn size_hint(&self) -> (usize, Option) { + let remaining = ExactSizeIterator::len(self); + (remaining, Some(remaining)) + } +} + +impl ExactSizeIterator for SparseMerklePathIter<'_> { + fn len(&self) -> usize { + self.next_depth as usize + } +} + +impl FusedIterator for SparseMerklePathIter<'_> {} + +// TODO: impl DoubleEndedIterator. + +/// Owning iterator for [SparseMerklePath]. +pub struct IntoIter { + /// The "inner" value we're iterating over. + path: SparseMerklePath, + + /// The depth a `next()` call will get. `next_depth == 0` indicates that the iterator has been + /// exhausted. + next_depth: u8, +} + +impl IntoIterator for SparseMerklePath { + type IntoIter = IntoIter; + type Item = ::Item; + + fn into_iter(self) -> IntoIter { + let tree_depth = self.depth(); + IntoIter { path: self, next_depth: tree_depth } + } +} + +impl Iterator for IntoIter { + type Item = RpoDigest; + + fn next(&mut self) -> Option { + let this_depth = self.next_depth; + // Paths don't include the root, so if `this_depth` is 0 then we keep returning `None`. + let this_depth = NonZero::new(this_depth)?; + self.next_depth = this_depth.get() - 1; + + // `this_depth` is only ever decreasing, so it can't ever exceed `self.path.depth()`. + let node = self.path.at_depth(this_depth).unwrap(); + Some(node) + } + + // IntoIter always knows its exact size. + fn size_hint(&self) -> (usize, Option) { + let remaining = ExactSizeIterator::len(self); + (remaining, Some(remaining)) + } +} + +impl ExactSizeIterator for IntoIter { + fn len(&self) -> usize { + self.next_depth as usize + } +} + +impl FusedIterator for IntoIter {} + +// TODO: impl DoubleEndedIterator. + +// COMPARISONS +// ================================================================================================ +impl PartialEq for SparseMerklePath { + fn eq(&self, rhs: &MerklePath) -> bool { + if self.depth() != rhs.depth() { + return false; + } + + for (node, &rhs_node) in iter::zip(self, rhs.iter()) { + if node != rhs_node { + return false; + } + } + + true + } +} + +impl PartialEq for MerklePath { + fn eq(&self, rhs: &SparseMerklePath) -> bool { + rhs == self + } +} + +// SPARSE VALUE PATH +// ================================================================================================ +/// A container for a [crate::Word] value and its [SparseMerklePath] opening. +#[derive(Clone, Debug, Default, PartialEq, Eq)] +pub struct SparseValuePath { + /// The node value opening for `path`. + pub value: RpoDigest, + /// The path from `value` to `root` (exclusive), using an efficient memory representation for + /// empty nodes. + pub path: SparseMerklePath, +} + +impl SparseValuePath { + /// Convenience function to construct a [SparseValuePath]. + /// + /// `value` is the value `path` leads to, in the tree. + pub fn new(value: RpoDigest, path: SparseMerklePath) -> Self { + Self { value, path } + } +} + +impl From<(SparseMerklePath, Word)> for SparseValuePath { + fn from((path, value): (SparseMerklePath, Word)) -> Self { + SparseValuePath::new(value.into(), path) + } +} + +/// # Errors +/// +/// This conversion returns [MerkleError::DepthTooBig] if the path length is greater than +/// [`SMT_MAX_DEPTH`]. +impl TryFrom for SparseValuePath { + type Error = MerkleError; + + fn try_from(other: ValuePath) -> Result { + let ValuePath { value, path } = other; + let path = SparseMerklePath::try_from(path)?; + Ok(SparseValuePath { value, path }) + } +} + +impl From for ValuePath { + fn from(other: SparseValuePath) -> Self { + let SparseValuePath { value, path } = other; + ValuePath { value, path: path.into() } + } +} + +impl PartialEq for SparseValuePath { + fn eq(&self, rhs: &ValuePath) -> bool { + self.value == rhs.value && self.path == rhs.path + } +} + +impl PartialEq for ValuePath { + fn eq(&self, rhs: &SparseValuePath) -> bool { + rhs == self + } +} + +// HELPERS +// ================================================================================================ + +/// Iterator for path depths, which start at the deepest part of the tree and go the shallowest +/// depth before the root (depth 1). +fn path_depth_iter(tree_depth: u8) -> impl ExactSizeIterator> { + let top_down_iter = (1..=tree_depth).map(|depth| { + // SAFETY: `RangeInclusive<1, _>` cannot ever yield 0. Even if `tree_depth` is 0, then the + // range is `RangeInclusive<1, 0>` will simply not yield any values, and this block won't + // even be reached. + unsafe { NonZero::new_unchecked(depth) } + }); + + // Reverse the top-down iterator to get a bottom-up iterator. + top_down_iter.rev() +} + +#[cfg(test)] +mod tests { + use alloc::vec::Vec; + use core::{iter, num::NonZero}; + + use assert_matches::assert_matches; + + use super::SparseMerklePath; + use crate::{ + Felt, ONE, Word, + hash::rpo::RpoDigest, + merkle::{ + EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex, SMT_DEPTH, Smt, + smt::SparseMerkleTree, sparse_path::path_depth_iter, + }, + }; + + fn make_smt(pair_count: u64) -> Smt { + let entries: Vec<(RpoDigest, Word)> = (0..pair_count) + .map(|n| { + let leaf_index = ((n as f64 / pair_count as f64) * 255.0) as u64; + let key = RpoDigest::new([ONE, ONE, Felt::new(n), Felt::new(leaf_index)]); + let value = [ONE, ONE, ONE, ONE]; + (key, value) + }) + .collect(); + + Smt::with_entries(entries).unwrap() + } + + #[test] + fn test_roundtrip() { + let tree = make_smt(8192); + + for (key, _value) in tree.entries() { + let (control_path, _) = tree.open(key).into_parts(); + assert_eq!(control_path.len(), tree.depth() as usize); + + let sparse_path = SparseMerklePath::try_from(control_path.clone()).unwrap(); + assert_eq!(control_path.depth(), sparse_path.depth()); + assert_eq!(sparse_path.depth(), SMT_DEPTH); + let test_path = MerklePath::from_iter(sparse_path.clone().into_iter()); + + assert_eq!(control_path, test_path); + } + } + + /// Manually test the exact bit patterns for a sample path of 8 nodes, including both empty and + /// non-empty nodes. + /// + /// This also offers an overview of what each part of the bit-math involved means and + /// represents. + #[test] + fn test_sparse_bits() { + const DEPTH: u8 = 8; + let raw_nodes: [RpoDigest; DEPTH as usize] = [ + // Depth 8. + ([8u8, 8, 8, 8].into()), + // Depth 7. + *EmptySubtreeRoots::entry(DEPTH, 7), + // Depth 6. + *EmptySubtreeRoots::entry(DEPTH, 6), + // Depth 5. + [5u8, 5, 5, 5].into(), + // Depth 4. + [4u8, 4, 4, 4].into(), + // Depth 3. + *EmptySubtreeRoots::entry(DEPTH, 3), + // Depth 2. + *EmptySubtreeRoots::entry(DEPTH, 2), + // Depth 1. + *EmptySubtreeRoots::entry(DEPTH, 1), + // Root is not included. + ]; + + let sparse_nodes: [Option; DEPTH as usize] = [ + // Depth 8. + Some([8u8, 8, 8, 8].into()), + // Depth 7. + None, + // Depth 6. + None, + // Depth 5. + Some([5u8, 5, 5, 5].into()), + // Depth 4. + Some([4u8, 4, 4, 4].into()), + // Depth 3. + None, + // Depth 2. + None, + // Depth 1. + None, + // Root is not included. + ]; + + const EMPTY_BITS: u64 = 0b0110_0111; + + let sparse_path = SparseMerklePath::from_sized_iter(raw_nodes).unwrap(); + + assert_eq!(sparse_path.empty_nodes_mask, EMPTY_BITS); + + // Depth 8. + { + let depth: u8 = 8; + + // Check that the way we calculate these indices is correct. + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 0); + + // Check that the way we calculate these bitmasks is correct. + let bit = 0b1000_0000; + assert_eq!(bit, 1 << (depth - 1)); + + // Check that the depth-8 bit is not set... + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert!(!is_set); + // ...which should match the status of the `sparse_nodes` element being `None`. + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + + // And finally, check that we can calculate non-empty indices correctly. + let control_node = raw_nodes.get(idx).unwrap(); + let nonempty_idx: usize = 0; + assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx); + let test_node = sparse_path.nodes.get(nonempty_idx).unwrap(); + assert_eq!(test_node, control_node); + } + + // Rinse and repeat for each remaining depth. + + // Depth 7. + { + let depth: u8 = 7; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 1); + let bit = 0b0100_0000; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert!(is_set); + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + + let &test_node = sparse_nodes.get(idx).unwrap(); + assert_eq!(test_node, None); + } + + // Depth 6. + { + let depth: u8 = 6; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 2); + let bit = 0b0010_0000; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + assert!(is_set); + + let &test_node = sparse_nodes.get(idx).unwrap(); + assert_eq!(test_node, None); + } + + // Depth 5. + { + let depth: u8 = 5; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 3); + let bit = 0b0001_0000; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + assert!(!is_set); + + let control_node = raw_nodes.get(idx).unwrap(); + let nonempty_idx: usize = 1; + assert_eq!(sparse_path.nodes.get(nonempty_idx).unwrap(), control_node); + assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx,); + let test_node = sparse_path.nodes.get(nonempty_idx).unwrap(); + assert_eq!(test_node, control_node); + } + + // Depth 4. + { + let depth: u8 = 4; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 4); + let bit = 0b0000_1000; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + assert!(!is_set); + + let control_node = raw_nodes.get(idx).unwrap(); + let nonempty_idx: usize = 2; + assert_eq!(sparse_path.nodes.get(nonempty_idx).unwrap(), control_node); + assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx,); + let test_node = sparse_path.nodes.get(nonempty_idx).unwrap(); + assert_eq!(test_node, control_node); + } + + // Depth 3. + { + let depth: u8 = 3; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 5); + let bit = 0b0000_0100; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert!(is_set); + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + + let &test_node = sparse_nodes.get(idx).unwrap(); + assert_eq!(test_node, None); + } + + // Depth 2. + { + let depth: u8 = 2; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 6); + let bit = 0b0000_0010; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert!(is_set); + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + + let &test_node = sparse_nodes.get(idx).unwrap(); + assert_eq!(test_node, None); + } + + // Depth 1. + { + let depth: u8 = 1; + let idx = (sparse_path.depth() - depth) as usize; + assert_eq!(idx, 7); + let bit = 0b0000_0001; + assert_eq!(bit, 1 << (depth - 1)); + let is_set = (sparse_path.empty_nodes_mask & bit) != 0; + assert!(is_set); + assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none()); + + let &test_node = sparse_nodes.get(idx).unwrap(); + assert_eq!(test_node, None); + } + } + + #[test] + fn from_sized_iter() { + let tree = make_smt(8192); + + for (key, _value) in tree.entries() { + let index = NodeIndex::from(Smt::key_to_leaf_index(key)); + + let control_path = tree.get_path(key); + for (&control_node, proof_index) in iter::zip(&*control_path, index.proof_indices()) { + let proof_node = tree.get_hash(proof_index); + assert_eq!(control_node, proof_node, "WHat"); + } + + let sparse_path = + SparseMerklePath::from_sized_iter(control_path.clone().into_iter()).unwrap(); + for (sparse_node, proof_idx) in iter::zip(sparse_path.clone(), index.proof_indices()) { + let proof_node = tree.get_hash(proof_idx); + assert_eq!(sparse_node, proof_node, "WHat"); + } + + assert_eq!(control_path.depth(), sparse_path.depth()); + for (i, (control, sparse)) in iter::zip(control_path, sparse_path).enumerate() { + assert_eq!(control, sparse, "on iteration {i}"); + } + } + } + + #[test] + fn test_random_access() { + let tree = make_smt(8192); + + for (i, (key, _value)) in tree.entries().enumerate() { + let control_path = tree.get_path(key); + let sparse_path = SparseMerklePath::try_from(control_path.clone()).unwrap(); + assert_eq!(control_path.depth(), sparse_path.depth()); + assert_eq!(sparse_path.depth(), SMT_DEPTH); + + // Test random access by depth. + for depth in path_depth_iter(control_path.depth()) { + let &control_node = control_path.at_depth(depth).unwrap(); + let sparse_node = sparse_path.at_depth(depth).unwrap(); + assert_eq!(control_node, sparse_node, "at depth {depth} for entry {i}"); + } + + // Test random access by index. + // Letting index get to `control_path.len()` will test that both sides correctly return + // `None` for out of bounds access. + for index in 0..=(control_path.len()) { + let control_node = control_path.at_idx(index).copied(); + let sparse_node = sparse_path.at_idx(index); + assert_eq!(control_node, sparse_node); + } + } + } + + #[test] + fn test_owning_iterator() { + let tree = make_smt(8192); + + for (key, _value) in tree.entries() { + let control_path = tree.get_path(key); + let sparse_path = SparseMerklePath::try_from(control_path.clone()).unwrap(); + assert_eq!(control_path.depth(), sparse_path.depth()); + assert_eq!(sparse_path.depth(), SMT_DEPTH); + + // Test that both iterators yield the same amount of the same values. + let mut count: u64 = 0; + for (&control_node, sparse_node) in iter::zip(control_path.iter(), sparse_path.iter()) { + count += 1; + assert_eq!(control_node, sparse_node); + } + assert_eq!(count, control_path.depth() as u64); + } + } + + #[test] + fn test_borrowing_iterator() { + let tree = make_smt(8192); + + for (key, _value) in tree.entries() { + let control_path = tree.get_path(key); + let path_depth = control_path.depth(); + let sparse_path = SparseMerklePath::try_from(control_path.clone()).unwrap(); + assert_eq!(control_path.depth(), sparse_path.depth()); + assert_eq!(sparse_path.depth(), SMT_DEPTH); + + // Test that both iterators yield the same amount of the same values. + let mut count: u64 = 0; + for (control_node, sparse_node) in iter::zip(control_path, sparse_path) { + count += 1; + assert_eq!(control_node, sparse_node); + } + assert_eq!(count, path_depth as u64); + } + } + + #[test] + fn test_zero_sized() { + let nodes: Vec = Default::default(); + + // Sparse paths that don't actually contain any nodes should still be well behaved. + let sparse_path = SparseMerklePath::from_sized_iter(nodes).unwrap(); + assert_eq!(sparse_path.depth(), 0); + assert_matches!( + sparse_path.at_depth(NonZero::new(1).unwrap()), + Err(MerkleError::DepthTooBig(1)) + ); + assert_eq!(sparse_path.at_idx(0), None); + assert_eq!(sparse_path.iter().next(), None); + assert_eq!(sparse_path.into_iter().next(), None); + } +}