merkle: add a benchmark for constructing 256-balanced trees
This is intended for comparison with the benchmarks from the previous commit. This benchmark represents the theoretical perfect-efficiency performance we could possibly (but impractically) get for computing depth-8 sparse Merkle subtrees.
This commit is contained in:
parent
1b1c4ccedb
commit
ae191003a5
2 changed files with 70 additions and 0 deletions
|
@ -31,6 +31,10 @@ harness = false
|
||||||
name = "smt-subtree"
|
name = "smt-subtree"
|
||||||
harness = false
|
harness = false
|
||||||
|
|
||||||
|
[[bench]]
|
||||||
|
name = "merkle"
|
||||||
|
harness = false
|
||||||
|
|
||||||
[[bench]]
|
[[bench]]
|
||||||
name = "store"
|
name = "store"
|
||||||
harness = false
|
harness = false
|
||||||
|
|
66
benches/merkle.rs
Normal file
66
benches/merkle.rs
Normal file
|
@ -0,0 +1,66 @@
|
||||||
|
//! Benchmark for building a [`miden_crypto::merkle::MerkleTree`]. This is intended to be compared
|
||||||
|
//! with the results from `benches/smt-subtree.rs`, as building a fully balanced Merkle tree with
|
||||||
|
//! 256 leaves should indicate the *absolute best* performance we could *possibly* get for building
|
||||||
|
//! a depth-8 sparse Merkle subtree, though practically speaking building a fully balanced Merkle
|
||||||
|
//! tree will perform better than the sparse version. At the time of this writing (2024/11/24), this
|
||||||
|
//! benchmark is about four times more efficient than the equivalent benchmark in
|
||||||
|
//! `benches/smt-subtree.rs`.
|
||||||
|
use std::{hint, mem, time::Duration};
|
||||||
|
|
||||||
|
use criterion::{criterion_group, criterion_main, BatchSize, Criterion};
|
||||||
|
use miden_crypto::{merkle::MerkleTree, Felt, Word, ONE};
|
||||||
|
use rand_utils::prng_array;
|
||||||
|
|
||||||
|
fn balanced_merkle_even(c: &mut Criterion) {
|
||||||
|
c.bench_function("balanced-merkle-even", |b| {
|
||||||
|
b.iter_batched(
|
||||||
|
|| {
|
||||||
|
let entries: Vec<Word> =
|
||||||
|
(0..256).map(|i| [Felt::new(i), ONE, ONE, Felt::new(i)]).collect();
|
||||||
|
assert_eq!(entries.len(), 256);
|
||||||
|
entries
|
||||||
|
},
|
||||||
|
|leaves| {
|
||||||
|
let tree = MerkleTree::new(hint::black_box(leaves)).unwrap();
|
||||||
|
assert_eq!(tree.depth(), 8);
|
||||||
|
},
|
||||||
|
BatchSize::SmallInput,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
fn balanced_merkle_rand(c: &mut Criterion) {
|
||||||
|
let mut seed = [0u8; 32];
|
||||||
|
c.bench_function("balanced-merkle-rand", |b| {
|
||||||
|
b.iter_batched(
|
||||||
|
|| {
|
||||||
|
let entries: Vec<Word> = (0..256).map(|_| generate_word(&mut seed)).collect();
|
||||||
|
assert_eq!(entries.len(), 256);
|
||||||
|
entries
|
||||||
|
},
|
||||||
|
|leaves| {
|
||||||
|
let tree = MerkleTree::new(hint::black_box(leaves)).unwrap();
|
||||||
|
assert_eq!(tree.depth(), 8);
|
||||||
|
},
|
||||||
|
BatchSize::SmallInput,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
criterion_group! {
|
||||||
|
name = smt_subtree_group;
|
||||||
|
config = Criterion::default()
|
||||||
|
.measurement_time(Duration::from_secs(20))
|
||||||
|
.configure_from_args();
|
||||||
|
targets = balanced_merkle_even, balanced_merkle_rand
|
||||||
|
}
|
||||||
|
criterion_main!(smt_subtree_group);
|
||||||
|
|
||||||
|
// HELPER FUNCTIONS
|
||||||
|
// --------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
fn generate_word(seed: &mut [u8; 32]) -> Word {
|
||||||
|
mem::swap(seed, &mut prng_array(*seed));
|
||||||
|
let nums: [u64; 4] = prng_array(*seed);
|
||||||
|
[Felt::new(nums[0]), Felt::new(nums[1]), Felt::new(nums[2]), Felt::new(nums[3])]
|
||||||
|
}
|
Loading…
Add table
Reference in a new issue