Merge pull request #140 from 0xPolygonMiden/next
Tracking PR for v0.5 release
This commit is contained in:
commit
daa27f49f2
18 changed files with 1469 additions and 361 deletions
|
@ -1,3 +1,10 @@
|
|||
## 0.5.0 (2023-05-26)
|
||||
* Implemented `TieredSmt` (#152, #153).
|
||||
* Implemented ability to extract a subset of a `MerkleStore` (#151).
|
||||
* Cleaned up `SimpleSmt` interface (#149).
|
||||
* Decoupled hashing and padding of peaks in `Mmr` (#148).
|
||||
* Added `inner_nodes()` to `MerkleStore` (#146).
|
||||
|
||||
## 0.4.0 (2023-04-21)
|
||||
|
||||
- Exported `MmrProof` from the crate (#137).
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
[package]
|
||||
name = "miden-crypto"
|
||||
version = "0.4.0"
|
||||
version = "0.5.0"
|
||||
description = "Miden Cryptographic primitives"
|
||||
authors = ["miden contributors"]
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/0xPolygonMiden/crypto"
|
||||
documentation = "https://docs.rs/miden-crypto/0.4.0"
|
||||
documentation = "https://docs.rs/miden-crypto/0.5.0"
|
||||
categories = ["cryptography", "no-std"]
|
||||
keywords = ["miden", "crypto", "hash", "merkle"]
|
||||
edition = "2021"
|
||||
|
@ -35,6 +35,6 @@ winter_math = { version = "0.6", package = "winter-math", default-features = fal
|
|||
winter_utils = { version = "0.6", package = "winter-utils", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = { version = "0.4", features = ["html_reports"] }
|
||||
criterion = { version = "0.5", features = ["html_reports"] }
|
||||
proptest = "1.1.0"
|
||||
rand_utils = { version = "0.6", package = "winter-rand-utils" }
|
||||
|
|
|
@ -18,8 +18,8 @@ fn smt_rpo(c: &mut Criterion) {
|
|||
(i, word)
|
||||
})
|
||||
.collect();
|
||||
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
|
||||
trees.push(tree);
|
||||
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
|
||||
trees.push((tree, count));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -29,10 +29,9 @@ fn smt_rpo(c: &mut Criterion) {
|
|||
|
||||
let mut insert = c.benchmark_group(format!("smt update_leaf"));
|
||||
|
||||
for tree in trees.iter_mut() {
|
||||
for (tree, count) in trees.iter_mut() {
|
||||
let depth = tree.depth();
|
||||
let count = tree.leaves_count() as u64;
|
||||
let key = count >> 2;
|
||||
let key = *count >> 2;
|
||||
insert.bench_with_input(
|
||||
format!("simple smt(depth:{depth},count:{count})"),
|
||||
&(key, leaf),
|
||||
|
@ -48,10 +47,9 @@ fn smt_rpo(c: &mut Criterion) {
|
|||
|
||||
let mut path = c.benchmark_group(format!("smt get_leaf_path"));
|
||||
|
||||
for tree in trees.iter_mut() {
|
||||
for (tree, count) in trees.iter_mut() {
|
||||
let depth = tree.depth();
|
||||
let count = tree.leaves_count() as u64;
|
||||
let key = count >> 2;
|
||||
let key = *count >> 2;
|
||||
path.bench_with_input(
|
||||
format!("simple smt(depth:{depth},count:{count})"),
|
||||
&key,
|
||||
|
|
|
@ -104,10 +104,7 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
|
||||
let store = MerkleStore::from(&smt);
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
@ -215,10 +212,7 @@ fn get_node_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
|
||||
let store = MerkleStore::from(&smt);
|
||||
let root = smt.root();
|
||||
let half_depth = smt.depth() / 2;
|
||||
|
@ -292,10 +286,7 @@ fn get_leaf_path_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
|
||||
let store = MerkleStore::from(&smt);
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
@ -361,7 +352,7 @@ fn new(c: &mut Criterion) {
|
|||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>()
|
||||
},
|
||||
|l| black_box(SimpleSmt::new(SimpleSmt::MAX_DEPTH).unwrap().with_leaves(l)),
|
||||
|l| black_box(SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, l)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -376,7 +367,7 @@ fn new(c: &mut Criterion) {
|
|||
.collect::<Vec<(u64, Word)>>()
|
||||
},
|
||||
|l| {
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH).unwrap().with_leaves(l).unwrap();
|
||||
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, l).unwrap();
|
||||
black_box(MerkleStore::from(&smt));
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
|
@ -442,10 +433,7 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let mut smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let mut smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
|
||||
let mut store = MerkleStore::from(&smt);
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
|
|
@ -2,7 +2,7 @@ use super::{Digest, Felt, StarkField, DIGEST_SIZE, ZERO};
|
|||
use crate::utils::{
|
||||
string::String, ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable,
|
||||
};
|
||||
use core::{cmp::Ordering, ops::Deref};
|
||||
use core::{cmp::Ordering, fmt::Display, ops::Deref};
|
||||
|
||||
// DIGEST TRAIT IMPLEMENTATIONS
|
||||
// ================================================================================================
|
||||
|
@ -85,6 +85,28 @@ impl From<RpoDigest> for [Felt; DIGEST_SIZE] {
|
|||
}
|
||||
}
|
||||
|
||||
impl From<&RpoDigest> for [u64; DIGEST_SIZE] {
|
||||
fn from(value: &RpoDigest) -> Self {
|
||||
[
|
||||
value.0[0].as_int(),
|
||||
value.0[1].as_int(),
|
||||
value.0[2].as_int(),
|
||||
value.0[3].as_int(),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
impl From<RpoDigest> for [u64; DIGEST_SIZE] {
|
||||
fn from(value: RpoDigest) -> Self {
|
||||
[
|
||||
value.0[0].as_int(),
|
||||
value.0[1].as_int(),
|
||||
value.0[2].as_int(),
|
||||
value.0[3].as_int(),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&RpoDigest> for [u8; 32] {
|
||||
fn from(value: &RpoDigest) -> Self {
|
||||
value.as_bytes()
|
||||
|
@ -134,6 +156,15 @@ impl PartialOrd for RpoDigest {
|
|||
}
|
||||
}
|
||||
|
||||
impl Display for RpoDigest {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
for byte in self.as_bytes() {
|
||||
write!(f, "{byte:02x}")?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
|
|
|
@ -1,6 +1,12 @@
|
|||
use super::{Felt, RpoDigest, WORD_SIZE, ZERO};
|
||||
use super::{Felt, RpoDigest, Word, WORD_SIZE, ZERO};
|
||||
use core::slice;
|
||||
|
||||
// CONSTANTS
|
||||
// ================================================================================================
|
||||
|
||||
/// A word consisting of 4 ZERO elements.
|
||||
pub const EMPTY_WORD: Word = [ZERO; WORD_SIZE];
|
||||
|
||||
// EMPTY NODES SUBTREES
|
||||
// ================================================================================================
|
||||
|
||||
|
@ -1570,7 +1576,7 @@ fn all_depths_opens_to_zero() {
|
|||
assert_eq!(depth as usize + 1, subtree.len());
|
||||
|
||||
// assert the opening is zero
|
||||
let initial = RpoDigest::new([ZERO; WORD_SIZE]);
|
||||
let initial = RpoDigest::new(EMPTY_WORD);
|
||||
assert_eq!(initial, subtree.remove(0));
|
||||
|
||||
// compute every node of the path manually and compare with the output
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
use super::{Felt, MerkleError, RpoDigest, StarkField};
|
||||
use core::fmt::Display;
|
||||
|
||||
// NODE INDEX
|
||||
// ================================================================================================
|
||||
|
@ -40,6 +41,12 @@ impl NodeIndex {
|
|||
}
|
||||
}
|
||||
|
||||
/// Creates a new node index without checking its validity.
|
||||
pub const fn new_unchecked(depth: u8, value: u64) -> Self {
|
||||
debug_assert!((64 - value.leading_zeros()) <= depth as u32);
|
||||
Self { depth, value }
|
||||
}
|
||||
|
||||
/// Creates a new node index for testing purposes.
|
||||
///
|
||||
/// # Panics
|
||||
|
@ -67,12 +74,26 @@ impl NodeIndex {
|
|||
Self { depth: 0, value: 0 }
|
||||
}
|
||||
|
||||
/// Computes the value of the sibling of the current node.
|
||||
pub fn sibling(mut self) -> Self {
|
||||
/// Computes sibling index of the current node.
|
||||
pub const fn sibling(mut self) -> Self {
|
||||
self.value ^= 1;
|
||||
self
|
||||
}
|
||||
|
||||
/// Returns left child index of the current node.
|
||||
pub const fn left_child(mut self) -> Self {
|
||||
self.depth += 1;
|
||||
self.value <<= 1;
|
||||
self
|
||||
}
|
||||
|
||||
/// Returns right child index of the current node.
|
||||
pub const fn right_child(mut self) -> Self {
|
||||
self.depth += 1;
|
||||
self.value = (self.value << 1) + 1;
|
||||
self
|
||||
}
|
||||
|
||||
// PROVIDERS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -117,11 +138,26 @@ impl NodeIndex {
|
|||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Traverse one level towards the root, decrementing the depth by `1`.
|
||||
pub fn move_up(&mut self) -> &mut Self {
|
||||
/// Traverses one level towards the root, decrementing the depth by `1`.
|
||||
pub fn move_up(&mut self) {
|
||||
self.depth = self.depth.saturating_sub(1);
|
||||
self.value >>= 1;
|
||||
self
|
||||
}
|
||||
|
||||
/// Traverses towards the root until the specified depth is reached.
|
||||
///
|
||||
/// Assumes that the specified depth is smaller than the current depth.
|
||||
pub fn move_up_to(&mut self, depth: u8) {
|
||||
debug_assert!(depth < self.depth);
|
||||
let delta = self.depth.saturating_sub(depth);
|
||||
self.depth = self.depth.saturating_sub(delta);
|
||||
self.value >>= delta as u32;
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for NodeIndex {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
write!(f, "depth={}, value={}", self.depth, self.value)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -114,6 +114,28 @@ impl MerkleTree {
|
|||
Ok(path.into())
|
||||
}
|
||||
|
||||
// ITERATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns an iterator over the leaves of this [MerkleTree].
|
||||
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
|
||||
let leaves_start = self.nodes.len() / 2;
|
||||
self.nodes.iter().skip(leaves_start).enumerate().map(|(i, v)| (i as u64, v))
|
||||
}
|
||||
|
||||
/// Returns n iterator over every inner node of this [MerkleTree].
|
||||
///
|
||||
/// The iterator order is unspecified.
|
||||
pub fn inner_nodes(&self) -> InnerNodeIterator {
|
||||
InnerNodeIterator {
|
||||
nodes: &self.nodes,
|
||||
index: 1, // index 0 is just padding, start at 1
|
||||
}
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Replaces the leaf at the specified index with the provided value.
|
||||
///
|
||||
/// # Errors
|
||||
|
@ -149,16 +171,6 @@ impl MerkleTree {
|
|||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns n iterator over every inner node of this [MerkleTree].
|
||||
///
|
||||
/// The iterator order is unspecified.
|
||||
pub fn inner_nodes(&self) -> InnerNodeIterator<'_> {
|
||||
InnerNodeIterator {
|
||||
nodes: &self.nodes,
|
||||
index: 1, // index 0 is just padding, start at 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ITERATORS
|
||||
|
|
|
@ -1,8 +1,4 @@
|
|||
use super::{
|
||||
super::Vec,
|
||||
super::{WORD_SIZE, ZERO},
|
||||
MmrProof, Rpo256, Word,
|
||||
};
|
||||
use super::{super::Vec, super::ZERO, Felt, MmrProof, Rpo256, Word};
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct MmrPeaks {
|
||||
|
@ -35,25 +31,49 @@ pub struct MmrPeaks {
|
|||
impl MmrPeaks {
|
||||
/// Hashes the peaks.
|
||||
///
|
||||
/// The hashing is optimized to work with the Miden VM, the procedure will:
|
||||
///
|
||||
/// - Pad the peaks with ZERO to an even number of words, this removes the need to handle RPO padding.
|
||||
/// - Pad the peaks to a minimum length of 16 words, which reduces the constant cost of
|
||||
/// hashing.
|
||||
/// The procedure will:
|
||||
/// - Flatten and pad the peaks to a vector of Felts.
|
||||
/// - Hash the vector of Felts.
|
||||
pub fn hash_peaks(&self) -> Word {
|
||||
let mut copy = self.peaks.clone();
|
||||
|
||||
if copy.len() < 16 {
|
||||
copy.resize(16, [ZERO; WORD_SIZE])
|
||||
} else if copy.len() % 2 == 1 {
|
||||
copy.push([ZERO; WORD_SIZE])
|
||||
}
|
||||
|
||||
Rpo256::hash_elements(©.as_slice().concat()).into()
|
||||
Rpo256::hash_elements(&self.flatten_and_pad_peaks()).into()
|
||||
}
|
||||
|
||||
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
|
||||
let root = &self.peaks[opening.peak_index()];
|
||||
opening.merkle_path.verify(opening.relative_pos() as u64, value, root)
|
||||
}
|
||||
|
||||
/// Flattens and pads the peaks to make hashing inside of the Miden VM easier.
|
||||
///
|
||||
/// The procedure will:
|
||||
/// - Flatten the vector of Words into a vector of Felts.
|
||||
/// - Pad the peaks with ZERO to an even number of words, this removes the need to handle RPO
|
||||
/// padding.
|
||||
/// - Pad the peaks to a minimum length of 16 words, which reduces the constant cost of
|
||||
/// hashing.
|
||||
pub fn flatten_and_pad_peaks(&self) -> Vec<Felt> {
|
||||
let num_peaks = self.peaks.len();
|
||||
|
||||
// To achieve the padding rules above we calculate the length of the final vector.
|
||||
// This is calculated as the number of field elements. Each peak is 4 field elements.
|
||||
// The length is calculated as follows:
|
||||
// - If there are less than 16 peaks, the data is padded to 16 peaks and as such requires
|
||||
// 64 field elements.
|
||||
// - If there are more than 16 peaks and the number of peaks is odd, the data is padded to
|
||||
// an even number of peaks and as such requires `(num_peaks + 1) * 4` field elements.
|
||||
// - If there are more than 16 peaks and the number of peaks is even, the data is not padded
|
||||
// and as such requires `num_peaks * 4` field elements.
|
||||
let len = if num_peaks < 16 {
|
||||
64
|
||||
} else if num_peaks % 2 == 1 {
|
||||
(num_peaks + 1) * 4
|
||||
} else {
|
||||
num_peaks * 4
|
||||
};
|
||||
|
||||
let mut elements = Vec::with_capacity(len);
|
||||
elements.extend_from_slice(&self.peaks.as_slice().concat());
|
||||
elements.resize(len, ZERO);
|
||||
elements
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,7 +6,7 @@ mod proof;
|
|||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
use super::{Rpo256, Word};
|
||||
use super::{Felt, Rpo256, Word};
|
||||
|
||||
// REEXPORTS
|
||||
// ================================================================================================
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use super::{
|
||||
hash::rpo::{Rpo256, RpoDigest},
|
||||
utils::collections::{vec, BTreeMap, Vec},
|
||||
utils::collections::{vec, BTreeMap, BTreeSet, Vec},
|
||||
Felt, StarkField, Word, WORD_SIZE, ZERO,
|
||||
};
|
||||
use core::fmt;
|
||||
|
@ -10,6 +10,7 @@ use core::fmt;
|
|||
|
||||
mod empty_roots;
|
||||
pub use empty_roots::EmptySubtreeRoots;
|
||||
use empty_roots::EMPTY_WORD;
|
||||
|
||||
mod index;
|
||||
pub use index::NodeIndex;
|
||||
|
@ -26,6 +27,9 @@ pub use path_set::MerklePathSet;
|
|||
mod simple_smt;
|
||||
pub use simple_smt::SimpleSmt;
|
||||
|
||||
mod tiered_smt;
|
||||
pub use tiered_smt::TieredSmt;
|
||||
|
||||
mod mmr;
|
||||
pub use mmr::{Mmr, MmrPeaks, MmrProof};
|
||||
|
||||
|
@ -43,13 +47,15 @@ pub enum MerkleError {
|
|||
ConflictingRoots(Vec<Word>),
|
||||
DepthTooSmall(u8),
|
||||
DepthTooBig(u64),
|
||||
NodeNotInStore(Word, NodeIndex),
|
||||
NumLeavesNotPowerOfTwo(usize),
|
||||
DuplicateValuesForIndex(u64),
|
||||
DuplicateValuesForKey(RpoDigest),
|
||||
InvalidIndex { depth: u8, value: u64 },
|
||||
InvalidDepth { expected: u8, provided: u8 },
|
||||
InvalidPath(MerklePath),
|
||||
InvalidEntriesCount(usize, usize),
|
||||
NodeNotInSet(u64),
|
||||
InvalidNumEntries(usize, usize),
|
||||
NodeNotInSet(NodeIndex),
|
||||
NodeNotInStore(Word, NodeIndex),
|
||||
NumLeavesNotPowerOfTwo(usize),
|
||||
RootNotInStore(Word),
|
||||
}
|
||||
|
||||
|
@ -60,9 +66,8 @@ impl fmt::Display for MerkleError {
|
|||
ConflictingRoots(roots) => write!(f, "the merkle paths roots do not match {roots:?}"),
|
||||
DepthTooSmall(depth) => write!(f, "the provided depth {depth} is too small"),
|
||||
DepthTooBig(depth) => write!(f, "the provided depth {depth} is too big"),
|
||||
NumLeavesNotPowerOfTwo(leaves) => {
|
||||
write!(f, "the leaves count {leaves} is not a power of 2")
|
||||
}
|
||||
DuplicateValuesForIndex(key) => write!(f, "multiple values provided for key {key}"),
|
||||
DuplicateValuesForKey(key) => write!(f, "multiple values provided for key {key}"),
|
||||
InvalidIndex{ depth, value} => write!(
|
||||
f,
|
||||
"the index value {value} is not valid for the depth {depth}"
|
||||
|
@ -72,9 +77,12 @@ impl fmt::Display for MerkleError {
|
|||
"the provided depth {provided} is not valid for {expected}"
|
||||
),
|
||||
InvalidPath(_path) => write!(f, "the provided path is not valid"),
|
||||
InvalidEntriesCount(max, provided) => write!(f, "the provided number of entries is {provided}, but the maximum for the given depth is {max}"),
|
||||
NodeNotInSet(index) => write!(f, "the node indexed by {index} is not in the set"),
|
||||
NodeNotInStore(hash, index) => write!(f, "the node {:?} indexed by {} and depth {} is not in the store", hash, index.value(), index.depth(),),
|
||||
InvalidNumEntries(max, provided) => write!(f, "the provided number of entries is {provided}, but the maximum for the given depth is {max}"),
|
||||
NodeNotInSet(index) => write!(f, "the node with index ({index}) is not in the set"),
|
||||
NodeNotInStore(hash, index) => write!(f, "the node {hash:?} with index ({index}) is not in the store"),
|
||||
NumLeavesNotPowerOfTwo(leaves) => {
|
||||
write!(f, "the leaves count {leaves} is not a power of 2")
|
||||
}
|
||||
RootNotInStore(root) => write!(f, "the root {:?} is not in the store", root),
|
||||
}
|
||||
}
|
||||
|
|
|
@ -73,7 +73,7 @@ impl MerklePathSet {
|
|||
let path_key = index.value() - parity;
|
||||
self.paths
|
||||
.get(&path_key)
|
||||
.ok_or(MerkleError::NodeNotInSet(path_key))
|
||||
.ok_or(MerkleError::NodeNotInSet(index))
|
||||
.map(|path| path[parity as usize])
|
||||
}
|
||||
|
||||
|
@ -104,11 +104,8 @@ impl MerklePathSet {
|
|||
|
||||
let parity = index.value() & 1;
|
||||
let path_key = index.value() - parity;
|
||||
let mut path = self
|
||||
.paths
|
||||
.get(&path_key)
|
||||
.cloned()
|
||||
.ok_or(MerkleError::NodeNotInSet(index.value()))?;
|
||||
let mut path =
|
||||
self.paths.get(&path_key).cloned().ok_or(MerkleError::NodeNotInSet(index))?;
|
||||
path.remove(parity as usize);
|
||||
Ok(path)
|
||||
}
|
||||
|
@ -200,7 +197,7 @@ impl MerklePathSet {
|
|||
let path_key = index.value() - parity;
|
||||
let path = match self.paths.get_mut(&path_key) {
|
||||
Some(path) => path,
|
||||
None => return Err(MerkleError::NodeNotInSet(base_index_value)),
|
||||
None => return Err(MerkleError::NodeNotInSet(index)),
|
||||
};
|
||||
|
||||
// Fill old_hashes vector -----------------------------------------------------------------
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use super::{
|
||||
BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256,
|
||||
RpoDigest, Vec, Word,
|
||||
BTreeMap, BTreeSet, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
|
||||
Rpo256, RpoDigest, Vec, Word, EMPTY_WORD,
|
||||
};
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -10,6 +10,7 @@ mod tests;
|
|||
// ================================================================================================
|
||||
|
||||
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
|
||||
///
|
||||
/// The root of the tree is recomputed on each new leaf update.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct SimpleSmt {
|
||||
|
@ -20,18 +21,6 @@ pub struct SimpleSmt {
|
|||
empty_hashes: Vec<RpoDigest>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq)]
|
||||
struct BranchNode {
|
||||
left: RpoDigest,
|
||||
right: RpoDigest,
|
||||
}
|
||||
|
||||
impl BranchNode {
|
||||
fn parent(&self) -> RpoDigest {
|
||||
Rpo256::merge(&[self.left, self.right])
|
||||
}
|
||||
}
|
||||
|
||||
impl SimpleSmt {
|
||||
// CONSTANTS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
@ -45,7 +34,12 @@ impl SimpleSmt {
|
|||
// CONSTRUCTORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Creates a new simple SMT with the provided depth.
|
||||
/// Returns a new [SimpleSmt] instantiated with the specified depth.
|
||||
///
|
||||
/// All leaves in the returned tree are set to [ZERO; 4].
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the depth is 0 or is greater than 64.
|
||||
pub fn new(depth: u8) -> Result<Self, MerkleError> {
|
||||
// validate the range of the depth.
|
||||
if depth < Self::MIN_DEPTH {
|
||||
|
@ -66,36 +60,47 @@ impl SimpleSmt {
|
|||
})
|
||||
}
|
||||
|
||||
/// Appends the provided entries as leaves of the tree.
|
||||
/// Returns a new [SimpleSmt] instantiated with the specified depth and with leaves
|
||||
/// set as specified by the provided entries.
|
||||
///
|
||||
/// All leaves omitted from the entries list are set to [ZERO; 4].
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// The function will fail if the provided entries count exceed the maximum tree capacity, that
|
||||
/// is `2^{depth}`.
|
||||
pub fn with_leaves<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
|
||||
/// Returns an error if:
|
||||
/// - If the depth is 0 or is greater than 64.
|
||||
/// - The number of entries exceeds the maximum tree capacity, that is 2^{depth}.
|
||||
/// - The provided entries contain multiple values for the same key.
|
||||
pub fn with_leaves<R, I>(depth: u8, entries: R) -> Result<Self, MerkleError>
|
||||
where
|
||||
R: IntoIterator<IntoIter = I>,
|
||||
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
|
||||
{
|
||||
// check if the leaves count will fit the depth setup
|
||||
let mut entries = entries.into_iter();
|
||||
let max = 1 << self.depth.min(63);
|
||||
// create an empty tree
|
||||
let mut tree = Self::new(depth)?;
|
||||
|
||||
// check if the number of leaves can be accommodated by the tree's depth; we use a min
|
||||
// depth of 63 because we consider passing in a vector of size 2^64 infeasible.
|
||||
let entries = entries.into_iter();
|
||||
let max = 1 << tree.depth.min(63);
|
||||
if entries.len() > max {
|
||||
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
|
||||
return Err(MerkleError::InvalidNumEntries(max, entries.len()));
|
||||
}
|
||||
|
||||
// append leaves and return
|
||||
entries.try_for_each(|(key, leaf)| self.insert_leaf(key, leaf))?;
|
||||
Ok(self)
|
||||
}
|
||||
|
||||
/// Replaces the internal empty digests used when a given depth doesn't contain a node.
|
||||
pub fn with_empty_subtrees<I>(mut self, hashes: I) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = RpoDigest>,
|
||||
{
|
||||
self.replace_empty_subtrees(hashes.into_iter().collect());
|
||||
self
|
||||
// append leaves to the tree returning an error if a duplicate entry for the same key
|
||||
// is found
|
||||
let mut empty_entries = BTreeSet::new();
|
||||
for (key, value) in entries {
|
||||
let old_value = tree.update_leaf(key, value)?;
|
||||
if old_value != EMPTY_WORD || empty_entries.contains(&key) {
|
||||
return Err(MerkleError::DuplicateValuesForIndex(key));
|
||||
}
|
||||
// if we've processed an empty entry, add the key to the set of empty entry keys, and
|
||||
// if this key was already in the set, return an error
|
||||
if value == EMPTY_WORD && !empty_entries.insert(key) {
|
||||
return Err(MerkleError::DuplicateValuesForIndex(key));
|
||||
}
|
||||
}
|
||||
Ok(tree)
|
||||
}
|
||||
|
||||
// PUBLIC ACCESSORS
|
||||
|
@ -111,40 +116,43 @@ impl SimpleSmt {
|
|||
self.depth
|
||||
}
|
||||
|
||||
// PROVIDERS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns the set count of the keys of the leaves.
|
||||
pub fn leaves_count(&self) -> usize {
|
||||
self.leaves.len()
|
||||
}
|
||||
|
||||
/// Returns a node at the specified index.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// * The specified depth is greater than the depth of the tree.
|
||||
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
|
||||
/// the depth of this Merkle tree.
|
||||
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
|
||||
if index.is_root() {
|
||||
Err(MerkleError::DepthTooSmall(index.depth()))
|
||||
} else if index.depth() > self.depth() {
|
||||
Err(MerkleError::DepthTooBig(index.depth() as u64))
|
||||
} else if index.depth() == self.depth() {
|
||||
self.get_leaf_node(index.value())
|
||||
.or_else(|| self.empty_hashes.get(index.depth() as usize).copied().map(Word::from))
|
||||
.ok_or(MerkleError::NodeNotInSet(index.value()))
|
||||
// the lookup in empty_hashes could fail only if empty_hashes were not built correctly
|
||||
// by the constructor as we check the depth of the lookup above.
|
||||
Ok(self
|
||||
.get_leaf_node(index.value())
|
||||
.unwrap_or_else(|| self.empty_hashes[index.depth() as usize].into()))
|
||||
} else {
|
||||
let branch_node = self.get_branch_node(&index);
|
||||
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
|
||||
Ok(self.get_branch_node(&index).parent().into())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a Merkle path from the node at the specified key to the root. The node itself is
|
||||
/// not included in the path.
|
||||
/// Returns a value of the leaf at the specified index.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// * The specified depth is greater than the depth of the tree.
|
||||
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
|
||||
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
|
||||
let index = NodeIndex::new(self.depth, index)?;
|
||||
self.get_node(index)
|
||||
}
|
||||
|
||||
/// Returns a Merkle path from the node at the specified index to the root.
|
||||
///
|
||||
/// The node itself is not included in the path.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
|
||||
/// the depth of this Merkle tree.
|
||||
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
|
||||
if index.is_root() {
|
||||
return Err(MerkleError::DepthTooSmall(index.depth()));
|
||||
|
@ -163,18 +171,26 @@ impl SimpleSmt {
|
|||
Ok(path.into())
|
||||
}
|
||||
|
||||
/// Return a Merkle path from the leaf at the specified key to the root. The leaf itself is not
|
||||
/// included in the path.
|
||||
/// Return a Merkle path from the leaf at the specified index to the root.
|
||||
///
|
||||
/// The leaf itself is not included in the path.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// * The specified key does not exist as a leaf node.
|
||||
pub fn get_leaf_path(&self, key: u64) -> Result<MerklePath, MerkleError> {
|
||||
let index = NodeIndex::new(self.depth(), key)?;
|
||||
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
|
||||
pub fn get_leaf_path(&self, index: u64) -> Result<MerklePath, MerkleError> {
|
||||
let index = NodeIndex::new(self.depth(), index)?;
|
||||
self.get_path(index)
|
||||
}
|
||||
|
||||
/// Iterator over the inner nodes of the [SimpleSmt].
|
||||
// ITERATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns an iterator over the leaves of this [SimpleSmt].
|
||||
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
|
||||
self.leaves.iter().map(|(i, w)| (*i, w))
|
||||
}
|
||||
|
||||
/// Returns an iterator over the inner nodes of this Merkle tree.
|
||||
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
|
||||
self.branches.values().map(|e| InnerNodeInfo {
|
||||
value: e.parent().into(),
|
||||
|
@ -186,27 +202,21 @@ impl SimpleSmt {
|
|||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the
|
||||
/// tree.
|
||||
/// Updates value of the leaf at the specified index returning the old leaf value.
|
||||
///
|
||||
/// This also recomputes all hashes between the leaf and the root, updating the root itself.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the specified key is not a valid leaf index for this tree.
|
||||
pub fn update_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
|
||||
let index = NodeIndex::new(self.depth(), key)?;
|
||||
if !self.check_leaf_node_exists(key) {
|
||||
return Err(MerkleError::NodeNotInSet(index.value()));
|
||||
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
|
||||
pub fn update_leaf(&mut self, index: u64, value: Word) -> Result<Word, MerkleError> {
|
||||
let old_value = self.insert_leaf_node(index, value).unwrap_or(EMPTY_WORD);
|
||||
|
||||
// if the old value and new value are the same, there is nothing to update
|
||||
if value == old_value {
|
||||
return Ok(value);
|
||||
}
|
||||
self.insert_leaf(key, value)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Inserts a leaf located at the specified key, and recomputes hashes by walking up the tree
|
||||
pub fn insert_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
|
||||
self.insert_leaf_node(key, value);
|
||||
|
||||
// TODO consider using a map `index |-> word` instead of `index |-> (word, word)`
|
||||
let mut index = NodeIndex::new(self.depth(), key)?;
|
||||
let mut index = NodeIndex::new(self.depth(), index)?;
|
||||
let mut value = RpoDigest::from(value);
|
||||
for _ in 0..index.depth() {
|
||||
let is_right = index.is_value_odd();
|
||||
|
@ -217,26 +227,18 @@ impl SimpleSmt {
|
|||
value = Rpo256::merge(&[left, right]);
|
||||
}
|
||||
self.root = value.into();
|
||||
Ok(())
|
||||
Ok(old_value)
|
||||
}
|
||||
|
||||
// HELPER METHODS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
fn replace_empty_subtrees(&mut self, hashes: Vec<RpoDigest>) {
|
||||
self.empty_hashes = hashes;
|
||||
}
|
||||
|
||||
fn check_leaf_node_exists(&self, key: u64) -> bool {
|
||||
self.leaves.contains_key(&key)
|
||||
}
|
||||
|
||||
fn get_leaf_node(&self, key: u64) -> Option<Word> {
|
||||
self.leaves.get(&key).copied()
|
||||
}
|
||||
|
||||
fn insert_leaf_node(&mut self, key: u64, node: Word) {
|
||||
self.leaves.insert(key, node);
|
||||
fn insert_leaf_node(&mut self, key: u64, node: Word) -> Option<Word> {
|
||||
self.leaves.insert(key, node)
|
||||
}
|
||||
|
||||
fn get_branch_node(&self, index: &NodeIndex) -> BranchNode {
|
||||
|
@ -254,3 +256,18 @@ impl SimpleSmt {
|
|||
self.branches.insert(index, branch);
|
||||
}
|
||||
}
|
||||
|
||||
// BRANCH NODE
|
||||
// ================================================================================================
|
||||
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq)]
|
||||
struct BranchNode {
|
||||
left: RpoDigest,
|
||||
right: RpoDigest,
|
||||
}
|
||||
|
||||
impl BranchNode {
|
||||
fn parent(&self) -> RpoDigest {
|
||||
Rpo256::merge(&[self.left, self.right])
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
use super::{
|
||||
super::{int_to_node, InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt},
|
||||
NodeIndex, Rpo256, Vec, Word,
|
||||
NodeIndex, Rpo256, Vec, Word, EMPTY_WORD,
|
||||
};
|
||||
use proptest::prelude::*;
|
||||
use rand_utils::prng_array;
|
||||
|
||||
// TEST DATA
|
||||
// ================================================================================================
|
||||
|
||||
const KEYS4: [u64; 4] = [0, 1, 2, 3];
|
||||
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
|
||||
|
@ -23,25 +24,17 @@ const VALUES8: [Word; 8] = [
|
|||
|
||||
const ZERO_VALUES8: [Word; 8] = [int_to_node(0); 8];
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[test]
|
||||
fn build_empty_tree() {
|
||||
// tree of depth 3
|
||||
let smt = SimpleSmt::new(3).unwrap();
|
||||
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
|
||||
assert_eq!(mt.root(), smt.root());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn empty_digests_are_consistent() {
|
||||
let depth = 5;
|
||||
let root = SimpleSmt::new(depth).unwrap().root();
|
||||
let computed: [RpoDigest; 2] = (0..depth).fold([Default::default(); 2], |state, _| {
|
||||
let digest = Rpo256::merge(&state);
|
||||
[digest; 2]
|
||||
});
|
||||
|
||||
assert_eq!(Word::from(computed[0]), root);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_sparse_tree() {
|
||||
let mut smt = SimpleSmt::new(3).unwrap();
|
||||
|
@ -51,80 +44,59 @@ fn build_sparse_tree() {
|
|||
let key = 6;
|
||||
let new_node = int_to_node(7);
|
||||
values[key as usize] = new_node;
|
||||
smt.insert_leaf(key, new_node).expect("Failed to insert leaf");
|
||||
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
|
||||
let mt2 = MerkleTree::new(values.clone()).unwrap();
|
||||
assert_eq!(mt2.root(), smt.root());
|
||||
assert_eq!(
|
||||
mt2.get_path(NodeIndex::make(3, 6)).unwrap(),
|
||||
smt.get_path(NodeIndex::make(3, 6)).unwrap()
|
||||
);
|
||||
assert_eq!(old_value, EMPTY_WORD);
|
||||
|
||||
// insert second value at distinct leaf branch
|
||||
let key = 2;
|
||||
let new_node = int_to_node(3);
|
||||
values[key as usize] = new_node;
|
||||
smt.insert_leaf(key, new_node).expect("Failed to insert leaf");
|
||||
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
|
||||
let mt3 = MerkleTree::new(values).unwrap();
|
||||
assert_eq!(mt3.root(), smt.root());
|
||||
assert_eq!(
|
||||
mt3.get_path(NodeIndex::make(3, 2)).unwrap(),
|
||||
smt.get_path(NodeIndex::make(3, 2)).unwrap()
|
||||
);
|
||||
assert_eq!(old_value, EMPTY_WORD);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_full_tree() {
|
||||
let tree = SimpleSmt::new(2)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
fn test_depth2_tree() {
|
||||
let tree = SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(VALUES4.into_iter())).unwrap();
|
||||
|
||||
// check internal structure
|
||||
let (root, node2, node3) = compute_internal_nodes();
|
||||
assert_eq!(root, tree.root());
|
||||
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_values() {
|
||||
let tree = SimpleSmt::new(2)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
|
||||
// check depth 2
|
||||
// check get_node()
|
||||
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
|
||||
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
|
||||
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
|
||||
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_path() {
|
||||
let tree = SimpleSmt::new(2)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
|
||||
let (_, node2, node3) = compute_internal_nodes();
|
||||
|
||||
// check depth 2
|
||||
// check get_path(): depth 2
|
||||
assert_eq!(vec![VALUES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
|
||||
assert_eq!(vec![VALUES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
|
||||
assert_eq!(vec![VALUES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
|
||||
assert_eq!(vec![VALUES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
|
||||
|
||||
// check depth 1
|
||||
// check get_path(): depth 1
|
||||
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parent_node_iterator() -> Result<(), MerkleError> {
|
||||
let tree = SimpleSmt::new(2)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
fn test_inner_node_iterator() -> Result<(), MerkleError> {
|
||||
let tree = SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(VALUES4.into_iter())).unwrap();
|
||||
|
||||
// check depth 2
|
||||
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
|
||||
|
@ -166,35 +138,28 @@ fn test_parent_node_iterator() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn update_leaf() {
|
||||
let mut tree = SimpleSmt::new(3)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS8.into_iter().zip(VALUES8.into_iter()))
|
||||
.unwrap();
|
||||
let mut tree = SimpleSmt::with_leaves(3, KEYS8.into_iter().zip(VALUES8.into_iter())).unwrap();
|
||||
|
||||
// update one value
|
||||
let key = 3;
|
||||
let new_node = int_to_node(9);
|
||||
let mut expected_values = VALUES8.to_vec();
|
||||
expected_values[key] = new_node;
|
||||
let expected_tree = SimpleSmt::new(3)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS8.into_iter().zip(expected_values.clone().into_iter()))
|
||||
.unwrap();
|
||||
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
|
||||
|
||||
tree.update_leaf(key as u64, new_node).unwrap();
|
||||
assert_eq!(expected_tree.root, tree.root);
|
||||
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
|
||||
assert_eq!(expected_tree.root(), tree.root);
|
||||
assert_eq!(old_leaf, VALUES8[key]);
|
||||
|
||||
// update another value
|
||||
let key = 6;
|
||||
let new_node = int_to_node(10);
|
||||
expected_values[key] = new_node;
|
||||
let expected_tree = SimpleSmt::new(3)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS8.into_iter().zip(expected_values.into_iter()))
|
||||
.unwrap();
|
||||
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
|
||||
|
||||
tree.update_leaf(key as u64, new_node).unwrap();
|
||||
assert_eq!(expected_tree.root, tree.root);
|
||||
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
|
||||
assert_eq!(expected_tree.root(), tree.root);
|
||||
assert_eq!(old_leaf, VALUES8[key]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -226,7 +191,7 @@ fn small_tree_opening_is_consistent() {
|
|||
|
||||
let depth = 3;
|
||||
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
|
||||
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
|
||||
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
|
||||
|
||||
assert_eq!(tree.root(), Word::from(k));
|
||||
|
||||
|
@ -250,56 +215,30 @@ fn small_tree_opening_is_consistent() {
|
|||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn arbitrary_openings_single_leaf(
|
||||
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
|
||||
key in prop::num::u64::ANY,
|
||||
leaf in prop::num::u64::ANY,
|
||||
) {
|
||||
let mut tree = SimpleSmt::new(depth).unwrap();
|
||||
#[test]
|
||||
fn fail_on_duplicates() {
|
||||
let entries = [(1_u64, int_to_node(1)), (5, int_to_node(2)), (1_u64, int_to_node(3))];
|
||||
let smt = SimpleSmt::with_leaves(64, entries);
|
||||
assert!(smt.is_err());
|
||||
|
||||
let key = key % (1 << depth as u64);
|
||||
let leaf = int_to_node(leaf);
|
||||
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2)), (1_u64, int_to_node(0))];
|
||||
let smt = SimpleSmt::with_leaves(64, entries);
|
||||
assert!(smt.is_err());
|
||||
|
||||
tree.insert_leaf(key, leaf.into()).unwrap();
|
||||
tree.get_leaf_path(key).unwrap();
|
||||
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2)), (1_u64, int_to_node(1))];
|
||||
let smt = SimpleSmt::with_leaves(64, entries);
|
||||
assert!(smt.is_err());
|
||||
|
||||
// traverse to root, fetching all paths
|
||||
for d in 1..depth {
|
||||
let k = key >> (depth - d);
|
||||
tree.get_path(NodeIndex::make(d, k)).unwrap();
|
||||
}
|
||||
}
|
||||
let entries = [(1_u64, int_to_node(1)), (5, int_to_node(2)), (1_u64, int_to_node(0))];
|
||||
let smt = SimpleSmt::with_leaves(64, entries);
|
||||
assert!(smt.is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn arbitrary_openings_multiple_leaves(
|
||||
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
|
||||
count in 2u8..10u8,
|
||||
ref seed in any::<[u8; 32]>()
|
||||
) {
|
||||
let mut tree = SimpleSmt::new(depth).unwrap();
|
||||
let mut seed = *seed;
|
||||
let leaves = (1 << depth) - 1;
|
||||
|
||||
for _ in 0..count {
|
||||
seed = prng_array(seed);
|
||||
|
||||
let mut key = [0u8; 8];
|
||||
let mut leaf = [0u8; 8];
|
||||
|
||||
key.copy_from_slice(&seed[..8]);
|
||||
leaf.copy_from_slice(&seed[8..16]);
|
||||
|
||||
let key = u64::from_le_bytes(key);
|
||||
let key = key % leaves;
|
||||
let leaf = u64::from_le_bytes(leaf);
|
||||
let leaf = int_to_node(leaf);
|
||||
|
||||
tree.insert_leaf(key, leaf).unwrap();
|
||||
tree.get_leaf_path(key).unwrap();
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn with_no_duplicates_empty_node() {
|
||||
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2))];
|
||||
let smt = SimpleSmt::with_leaves(64, entries);
|
||||
assert!(smt.is_ok());
|
||||
}
|
||||
|
||||
// HELPER FUNCTIONS
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
use super::mmr::Mmr;
|
||||
use super::{
|
||||
BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, MerklePathSet, MerkleTree,
|
||||
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
|
||||
mmr::Mmr, BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, MerklePathSet,
|
||||
MerkleTree, NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, TieredSmt, ValuePath, Vec, Word,
|
||||
};
|
||||
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
|
||||
use core::borrow::Borrow;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
@ -14,7 +14,7 @@ pub struct Node {
|
|||
right: RpoDigest,
|
||||
}
|
||||
|
||||
/// An in-memory data store for Merkle-lized data.
|
||||
/// An in-memory data store for Merkelized data.
|
||||
///
|
||||
/// This is a in memory data store for Merkle trees, this store allows all the nodes of multiple
|
||||
/// trees to live as long as necessary and without duplication, this allows the implementation of
|
||||
|
@ -152,7 +152,6 @@ impl MerkleStore {
|
|||
/// The path starts at the sibling of the target leaf.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method can return the following errors:
|
||||
/// - `RootNotInStore` if the `root` is not present in the store.
|
||||
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
|
||||
|
@ -257,6 +256,35 @@ impl MerkleStore {
|
|||
Ok(tree_depth)
|
||||
}
|
||||
|
||||
// DATA EXTRACTORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns a subset of this Merkle store such that the returned Merkle store contains all
|
||||
/// nodes which are descendants of the specified roots.
|
||||
///
|
||||
/// The roots for which no descendants exist in this Merkle store are ignored.
|
||||
pub fn subset<I, R>(&self, roots: I) -> MerkleStore
|
||||
where
|
||||
I: Iterator<Item = R>,
|
||||
R: Borrow<Word>,
|
||||
{
|
||||
let mut store = MerkleStore::new();
|
||||
for root in roots {
|
||||
let root = RpoDigest::from(*root.borrow());
|
||||
store.clone_tree_from(root, self);
|
||||
}
|
||||
store
|
||||
}
|
||||
|
||||
/// Iterator over the inner nodes of the [MerkleStore].
|
||||
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
|
||||
self.nodes.iter().map(|(r, n)| InnerNodeInfo {
|
||||
value: r.into(),
|
||||
left: n.left.into(),
|
||||
right: n.right.into(),
|
||||
})
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -364,6 +392,24 @@ impl MerkleStore {
|
|||
|
||||
Ok(parent.into())
|
||||
}
|
||||
|
||||
// HELPER METHODS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Recursively clones a tree with the specified root from the specified source into self.
|
||||
///
|
||||
/// If the source store does not contain a tree with the specified root, this is a noop.
|
||||
fn clone_tree_from(&mut self, root: RpoDigest, source: &Self) {
|
||||
// process the node only if it is in the source
|
||||
if let Some(node) = source.nodes.get(&root) {
|
||||
// if the node has already been inserted, no need to process it further as all of its
|
||||
// descendants should be already cloned from the source store
|
||||
if matches!(self.nodes.insert(root, *node), None) {
|
||||
self.clone_tree_from(node.left, source);
|
||||
self.clone_tree_from(node.right, source);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CONVERSIONS
|
||||
|
@ -393,6 +439,14 @@ impl From<&Mmr> for MerkleStore {
|
|||
}
|
||||
}
|
||||
|
||||
impl From<&TieredSmt> for MerkleStore {
|
||||
fn from(value: &TieredSmt) -> Self {
|
||||
let mut store = MerkleStore::new();
|
||||
store.extend(value.inner_nodes());
|
||||
store
|
||||
}
|
||||
}
|
||||
|
||||
impl FromIterator<InnerNodeInfo> for MerkleStore {
|
||||
fn from_iter<T: IntoIterator<Item = InnerNodeInfo>>(iter: T) -> Self {
|
||||
let mut store = MerkleStore::new();
|
||||
|
|
|
@ -1,29 +1,48 @@
|
|||
use super::*;
|
||||
use super::{
|
||||
super::EMPTY_WORD, Deserializable, EmptySubtreeRoots, MerkleError, MerklePath, MerkleStore,
|
||||
NodeIndex, RpoDigest, Serializable,
|
||||
};
|
||||
use crate::{
|
||||
hash::rpo::Rpo256,
|
||||
merkle::{int_to_node, MerklePathSet, MerkleTree, SimpleSmt},
|
||||
Felt, Word, WORD_SIZE, ZERO,
|
||||
Felt, Word, WORD_SIZE,
|
||||
};
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
use std::error::Error;
|
||||
|
||||
// TEST DATA
|
||||
// ================================================================================================
|
||||
|
||||
const KEYS4: [u64; 4] = [0, 1, 2, 3];
|
||||
const LEAVES4: [Word; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
|
||||
const EMPTY: Word = [ZERO; WORD_SIZE];
|
||||
const VALUES4: [Word; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
|
||||
|
||||
const VALUES8: [Word; 8] = [
|
||||
int_to_node(1),
|
||||
int_to_node(2),
|
||||
int_to_node(3),
|
||||
int_to_node(4),
|
||||
int_to_node(5),
|
||||
int_to_node(6),
|
||||
int_to_node(7),
|
||||
int_to_node(8),
|
||||
];
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[test]
|
||||
fn test_root_not_in_store() -> Result<(), MerkleError> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
let store = MerkleStore::from(&mtree);
|
||||
assert_eq!(
|
||||
store.get_node(LEAVES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(LEAVES4[0])),
|
||||
store.get_node(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(VALUES4[0])),
|
||||
"Leaf 0 is not a root"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_path(LEAVES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(LEAVES4[0])),
|
||||
store.get_path(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(VALUES4[0])),
|
||||
"Leaf 0 is not a root"
|
||||
);
|
||||
|
||||
|
@ -32,33 +51,33 @@ fn test_root_not_in_store() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn test_merkle_tree() -> Result<(), MerkleError> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
let store = MerkleStore::from(&mtree);
|
||||
|
||||
// STORE LEAVES ARE CORRECT ==============================================================
|
||||
// STORE LEAVES ARE CORRECT -------------------------------------------------------------------
|
||||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
Ok(VALUES4[0]),
|
||||
"node 0 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
Ok(VALUES4[1]),
|
||||
"node 1 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
Ok(VALUES4[2]),
|
||||
"node 2 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
Ok(VALUES4[3]),
|
||||
"node 3 must be in the tree"
|
||||
);
|
||||
|
||||
// STORE LEAVES MATCH TREE ===============================================================
|
||||
// STORE LEAVES MATCH TREE --------------------------------------------------------------------
|
||||
// sanity check the values returned by the store and the tree
|
||||
assert_eq!(
|
||||
mtree.get_node(NodeIndex::make(mtree.depth(), 0)),
|
||||
|
@ -85,7 +104,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
// assert the merkle path returned by the store is the same as the one in the tree
|
||||
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 0)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
VALUES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -96,7 +115,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 1)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
VALUES4[1], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -107,7 +126,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 2)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
VALUES4[2], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -118,7 +137,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 3)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
VALUES4[3], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -133,7 +152,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
#[test]
|
||||
fn test_empty_roots() {
|
||||
let store = MerkleStore::default();
|
||||
let mut root = RpoDigest::new(EMPTY);
|
||||
let mut root = RpoDigest::new(EMPTY_WORD);
|
||||
|
||||
for depth in 0..255 {
|
||||
root = Rpo256::merge(&[root; 2]);
|
||||
|
@ -157,13 +176,13 @@ fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
|
|||
let index = NodeIndex::make(depth, 0);
|
||||
let store_path = store.get_path(smt.root(), index)?;
|
||||
let smt_path = smt.get_path(index)?;
|
||||
assert_eq!(store_path.value, EMPTY, "the leaf of an empty tree is always ZERO");
|
||||
assert_eq!(store_path.value, EMPTY_WORD, "the leaf of an empty tree is always ZERO");
|
||||
assert_eq!(
|
||||
store_path.path, smt_path,
|
||||
"the returned merkle path does not match the computed values"
|
||||
);
|
||||
assert_eq!(
|
||||
store_path.path.compute_root(depth.into(), EMPTY).unwrap(),
|
||||
store_path.path.compute_root(depth.into(), EMPTY_WORD).unwrap(),
|
||||
smt.root(),
|
||||
"computed root from the path must match the empty tree root"
|
||||
);
|
||||
|
@ -174,7 +193,7 @@ fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn test_get_invalid_node() {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec()).expect("creating a merkle tree must work");
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec()).expect("creating a merkle tree must work");
|
||||
let store = MerkleStore::from(&mtree);
|
||||
let _ = store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3));
|
||||
}
|
||||
|
@ -183,10 +202,7 @@ fn test_get_invalid_node() {
|
|||
fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
|
||||
let keys2: [u64; 2] = [0, 1];
|
||||
let leaves2: [Word; 2] = [int_to_node(1), int_to_node(2)];
|
||||
let smt = SimpleSmt::new(1)
|
||||
.unwrap()
|
||||
.with_leaves(keys2.into_iter().zip(leaves2.into_iter()))
|
||||
.unwrap();
|
||||
let smt = SimpleSmt::with_leaves(1, keys2.into_iter().zip(leaves2.into_iter())).unwrap();
|
||||
let store = MerkleStore::from(&smt);
|
||||
|
||||
let idx = NodeIndex::make(1, 0);
|
||||
|
@ -202,10 +218,9 @@ fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
|
||||
.unwrap();
|
||||
let smt =
|
||||
SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
|
||||
let store = MerkleStore::from(&smt);
|
||||
|
||||
|
@ -213,27 +228,27 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
Ok(VALUES4[0]),
|
||||
"node 0 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
Ok(VALUES4[1]),
|
||||
"node 1 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
Ok(VALUES4[2]),
|
||||
"node 2 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
Ok(VALUES4[3]),
|
||||
"node 3 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
|
||||
Ok(EMPTY),
|
||||
Ok(EMPTY_WORD),
|
||||
"unmodified node 4 must be ZERO"
|
||||
);
|
||||
|
||||
|
@ -269,7 +284,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
// assert the merkle path returned by the store is the same as the one in the tree
|
||||
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 0)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
VALUES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -280,7 +295,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 1)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
VALUES4[1], result.value,
|
||||
"Value for merkle path at index 1 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -291,7 +306,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 2)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
VALUES4[2], result.value,
|
||||
"Value for merkle path at index 2 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -302,7 +317,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 3)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
VALUES4[3], result.value,
|
||||
"Value for merkle path at index 3 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -312,7 +327,10 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
);
|
||||
|
||||
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 4)).unwrap();
|
||||
assert_eq!(EMPTY, result.value, "Value for merkle path at index 4 must match leaf value");
|
||||
assert_eq!(
|
||||
EMPTY_WORD, result.value,
|
||||
"Value for merkle path at index 4 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 4)),
|
||||
Ok(result.path),
|
||||
|
@ -324,7 +342,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
|
||||
let i0 = 0;
|
||||
let p0 = mtree.get_path(NodeIndex::make(2, i0)).unwrap();
|
||||
|
@ -339,10 +357,10 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
let p3 = mtree.get_path(NodeIndex::make(2, i3)).unwrap();
|
||||
|
||||
let paths = [
|
||||
(i0, LEAVES4[i0 as usize], p0),
|
||||
(i1, LEAVES4[i1 as usize], p1),
|
||||
(i2, LEAVES4[i2 as usize], p2),
|
||||
(i3, LEAVES4[i3 as usize], p3),
|
||||
(i0, VALUES4[i0 as usize], p0),
|
||||
(i1, VALUES4[i1 as usize], p1),
|
||||
(i2, VALUES4[i2 as usize], p2),
|
||||
(i3, VALUES4[i3 as usize], p3),
|
||||
];
|
||||
|
||||
let mut store = MerkleStore::default();
|
||||
|
@ -355,22 +373,22 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
Ok(VALUES4[0]),
|
||||
"node 0 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
Ok(VALUES4[1]),
|
||||
"node 1 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
Ok(VALUES4[2]),
|
||||
"node 2 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
Ok(VALUES4[3]),
|
||||
"node 3 must be in the set"
|
||||
);
|
||||
|
||||
|
@ -401,7 +419,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
// assert the merkle path returned by the store is the same as the one in the set
|
||||
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 0)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
VALUES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -412,7 +430,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 1)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
VALUES4[1], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -423,7 +441,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 2)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
VALUES4[2], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -434,7 +452,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
|
||||
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 3)).unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
VALUES4[3], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
|
@ -502,7 +520,7 @@ fn store_path_opens_from_leaf() {
|
|||
|
||||
#[test]
|
||||
fn test_set_node() -> Result<(), MerkleError> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
let mut store = MerkleStore::from(&mtree);
|
||||
let value = int_to_node(42);
|
||||
let index = NodeIndex::make(mtree.depth(), 0);
|
||||
|
@ -514,7 +532,7 @@ fn test_set_node() -> Result<(), MerkleError> {
|
|||
|
||||
#[test]
|
||||
fn test_constructors() -> Result<(), MerkleError> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
let store = MerkleStore::from(&mtree);
|
||||
|
||||
let depth = mtree.depth();
|
||||
|
@ -526,10 +544,7 @@ fn test_constructors() -> Result<(), MerkleError> {
|
|||
}
|
||||
|
||||
let depth = 32;
|
||||
let smt = SimpleSmt::new(depth)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
|
||||
.unwrap();
|
||||
let smt = SimpleSmt::with_leaves(depth, KEYS4.into_iter().zip(VALUES4.into_iter())).unwrap();
|
||||
let store = MerkleStore::from(&smt);
|
||||
let depth = smt.depth();
|
||||
|
||||
|
@ -541,20 +556,20 @@ fn test_constructors() -> Result<(), MerkleError> {
|
|||
|
||||
let d = 2;
|
||||
let paths = [
|
||||
(0, LEAVES4[0], mtree.get_path(NodeIndex::make(d, 0)).unwrap()),
|
||||
(1, LEAVES4[1], mtree.get_path(NodeIndex::make(d, 1)).unwrap()),
|
||||
(2, LEAVES4[2], mtree.get_path(NodeIndex::make(d, 2)).unwrap()),
|
||||
(3, LEAVES4[3], mtree.get_path(NodeIndex::make(d, 3)).unwrap()),
|
||||
(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0)).unwrap()),
|
||||
(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1)).unwrap()),
|
||||
(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2)).unwrap()),
|
||||
(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3)).unwrap()),
|
||||
];
|
||||
|
||||
let mut store1 = MerkleStore::default();
|
||||
store1.add_merkle_paths(paths.clone())?;
|
||||
|
||||
let mut store2 = MerkleStore::default();
|
||||
store2.add_merkle_path(0, LEAVES4[0], mtree.get_path(NodeIndex::make(d, 0))?)?;
|
||||
store2.add_merkle_path(1, LEAVES4[1], mtree.get_path(NodeIndex::make(d, 1))?)?;
|
||||
store2.add_merkle_path(2, LEAVES4[2], mtree.get_path(NodeIndex::make(d, 2))?)?;
|
||||
store2.add_merkle_path(3, LEAVES4[3], mtree.get_path(NodeIndex::make(d, 3))?)?;
|
||||
store2.add_merkle_path(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0))?)?;
|
||||
store2.add_merkle_path(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1))?)?;
|
||||
store2.add_merkle_path(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2))?)?;
|
||||
store2.add_merkle_path(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3))?)?;
|
||||
let set = MerklePathSet::new(d).with_paths(paths).unwrap();
|
||||
|
||||
for key in [0, 1, 2, 3] {
|
||||
|
@ -718,10 +733,67 @@ fn get_leaf_depth_works_with_depth_8() {
|
|||
assert_eq!(Err(MerkleError::DepthTooBig(9)), store.get_leaf_depth(root, 8, a));
|
||||
}
|
||||
|
||||
// SUBSET EXTRACTION
|
||||
// ================================================================================================
|
||||
|
||||
#[test]
|
||||
fn mstore_subset() {
|
||||
// add a Merkle tree of depth 3 to the store
|
||||
let mtree = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
||||
let mut store = MerkleStore::default();
|
||||
let empty_store_num_nodes = store.nodes.len();
|
||||
store.extend(mtree.inner_nodes());
|
||||
|
||||
// build 3 subtrees contained within the above Merkle tree; note that subtree2 is a subset
|
||||
// of subtree1
|
||||
let subtree1 = MerkleTree::new(VALUES8[..4].to_vec()).unwrap();
|
||||
let subtree2 = MerkleTree::new(VALUES8[2..4].to_vec()).unwrap();
|
||||
let subtree3 = MerkleTree::new(VALUES8[6..].to_vec()).unwrap();
|
||||
|
||||
// --- extract all 3 subtrees ---------------------------------------------
|
||||
|
||||
let substore = store.subset([subtree1.root(), subtree2.root(), subtree3.root()].iter());
|
||||
|
||||
// number of nodes should increase by 4: 3 nodes form subtree1 and 1 node from subtree3
|
||||
assert_eq!(substore.nodes.len(), empty_store_num_nodes + 4);
|
||||
|
||||
// make sure paths that all subtrees are in the store
|
||||
check_mstore_subtree(&substore, &subtree1);
|
||||
check_mstore_subtree(&substore, &subtree2);
|
||||
check_mstore_subtree(&substore, &subtree3);
|
||||
|
||||
// --- extract subtrees 1 and 3 -------------------------------------------
|
||||
// this should give the same result as above as subtree2 is nested withing subtree1
|
||||
|
||||
let substore = store.subset([subtree1.root(), subtree3.root()].iter());
|
||||
|
||||
// number of nodes should increase by 4: 3 nodes form subtree1 and 1 node from subtree3
|
||||
assert_eq!(substore.nodes.len(), empty_store_num_nodes + 4);
|
||||
|
||||
// make sure paths that all subtrees are in the store
|
||||
check_mstore_subtree(&substore, &subtree1);
|
||||
check_mstore_subtree(&substore, &subtree2);
|
||||
check_mstore_subtree(&substore, &subtree3);
|
||||
}
|
||||
|
||||
fn check_mstore_subtree(store: &MerkleStore, subtree: &MerkleTree) {
|
||||
for (i, value) in subtree.leaves() {
|
||||
let index = NodeIndex::new(subtree.depth(), i).unwrap();
|
||||
let path1 = store.get_path(subtree.root(), index).unwrap();
|
||||
assert_eq!(&path1.value, value);
|
||||
|
||||
let path2 = subtree.get_path(index).unwrap();
|
||||
assert_eq!(path1.path, path2);
|
||||
}
|
||||
}
|
||||
|
||||
// SERIALIZATION
|
||||
// ================================================================================================
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[test]
|
||||
fn test_serialization() -> Result<(), Box<dyn Error>> {
|
||||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mtree = MerkleTree::new(VALUES4.to_vec())?;
|
||||
let store = MerkleStore::from(&mtree);
|
||||
let decoded = MerkleStore::read_from_bytes(&store.to_bytes()).expect("deserialization failed");
|
||||
assert_eq!(store, decoded);
|
||||
|
|
482
src/merkle/tiered_smt/mod.rs
Normal file
482
src/merkle/tiered_smt/mod.rs
Normal file
|
@ -0,0 +1,482 @@
|
|||
use super::{
|
||||
BTreeMap, BTreeSet, EmptySubtreeRoots, Felt, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
|
||||
Rpo256, RpoDigest, StarkField, Vec, Word, EMPTY_WORD, ZERO,
|
||||
};
|
||||
use core::cmp;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
// TIERED SPARSE MERKLE TREE
|
||||
// ================================================================================================
|
||||
|
||||
/// Tiered (compacted) Sparse Merkle tree mapping 256-bit keys to 256-bit values. Both keys and
|
||||
/// values are represented by 4 field elements.
|
||||
///
|
||||
/// Leaves in the tree can exist only on specific depths called "tiers". These depths are: 16, 32,
|
||||
/// 48, and 64. Initially, when a tree is empty, it is equivalent to an empty Sparse Merkle tree
|
||||
/// of depth 64 (i.e., leaves at depth 64 are set to [ZERO; 4]). As non-empty values are inserted
|
||||
/// into the tree they are added to the first available tier.
|
||||
///
|
||||
/// For example, when the first key-value is inserted, it will be stored in a node at depth 16
|
||||
/// such that the first 16 bits of the key determine the position of the node at depth 16. If
|
||||
/// another value with a key sharing the same 16-bit prefix is inserted, both values move into
|
||||
/// the next tier (depth 32). This process is repeated until values end up at tier 64. If multiple
|
||||
/// values have keys with a common 64-bit prefix, such key-value pairs are stored in a sorted list
|
||||
/// at the last tier (depth = 64).
|
||||
///
|
||||
/// To differentiate between internal and leaf nodes, node values are computed as follows:
|
||||
/// - Internal nodes: hash(left_child, right_child).
|
||||
/// - Leaf node at depths 16, 32, or 64: hash(rem_key, value, domain=depth).
|
||||
/// - Leaf node at depth 64: hash([rem_key_0, value_0, ..., rem_key_n, value_n, domain=64]).
|
||||
///
|
||||
/// Where rem_key is computed by replacing d most significant bits of the key with zeros where d
|
||||
/// is depth (i.e., for a leaf at depth 16, we replace 16 most significant bits of the key with 0).
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct TieredSmt {
|
||||
root: RpoDigest,
|
||||
nodes: BTreeMap<NodeIndex, RpoDigest>,
|
||||
upper_leaves: BTreeMap<NodeIndex, RpoDigest>, // node_index |-> key map
|
||||
bottom_leaves: BTreeMap<u64, BottomLeaf>, // leaves of depth 64
|
||||
values: BTreeMap<RpoDigest, Word>,
|
||||
}
|
||||
|
||||
impl TieredSmt {
|
||||
// CONSTANTS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// The number of levels between tiers.
|
||||
const TIER_SIZE: u8 = 16;
|
||||
|
||||
/// Depths at which leaves can exist in a tiered SMT.
|
||||
const TIER_DEPTHS: [u8; 4] = [16, 32, 48, 64];
|
||||
|
||||
/// Maximum node depth. This is also the bottom tier of the tree.
|
||||
const MAX_DEPTH: u8 = 64;
|
||||
|
||||
// CONSTRUCTORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns a new [TieredSmt] instantiated with the specified key-value pairs.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the provided entries contain multiple values for the same key.
|
||||
pub fn with_leaves<R, I>(entries: R) -> Result<Self, MerkleError>
|
||||
where
|
||||
R: IntoIterator<IntoIter = I>,
|
||||
I: Iterator<Item = (RpoDigest, Word)> + ExactSizeIterator,
|
||||
{
|
||||
// create an empty tree
|
||||
let mut tree = Self::default();
|
||||
|
||||
// append leaves to the tree returning an error if a duplicate entry for the same key
|
||||
// is found
|
||||
let mut empty_entries = BTreeSet::new();
|
||||
for (key, value) in entries {
|
||||
let old_value = tree.insert(key, value);
|
||||
if old_value != EMPTY_WORD || empty_entries.contains(&key) {
|
||||
return Err(MerkleError::DuplicateValuesForKey(key));
|
||||
}
|
||||
// if we've processed an empty entry, add the key to the set of empty entry keys, and
|
||||
// if this key was already in the set, return an error
|
||||
if value == EMPTY_WORD && !empty_entries.insert(key) {
|
||||
return Err(MerkleError::DuplicateValuesForKey(key));
|
||||
}
|
||||
}
|
||||
Ok(tree)
|
||||
}
|
||||
|
||||
// PUBLIC ACCESSORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns the root of this Merkle tree.
|
||||
pub const fn root(&self) -> RpoDigest {
|
||||
self.root
|
||||
}
|
||||
|
||||
/// Returns a node at the specified index.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// - The specified index depth is 0 or greater than 64.
|
||||
/// - The node with the specified index does not exists in the Merkle tree. This is possible
|
||||
/// when a leaf node with the same index prefix exists at a tier higher than the requested
|
||||
/// node.
|
||||
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
|
||||
self.validate_node_access(index)?;
|
||||
Ok(self.get_node_unchecked(&index))
|
||||
}
|
||||
|
||||
/// Returns a Merkle path from the node at the specified index to the root.
|
||||
///
|
||||
/// The node itself is not included in the path.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// - The specified index depth is 0 or greater than 64.
|
||||
/// - The node with the specified index does not exists in the Merkle tree. This is possible
|
||||
/// when a leaf node with the same index prefix exists at a tier higher than the node to
|
||||
/// which the path is requested.
|
||||
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
|
||||
self.validate_node_access(index)?;
|
||||
|
||||
let mut path = Vec::with_capacity(index.depth() as usize);
|
||||
for _ in 0..index.depth() {
|
||||
let node = self.get_node_unchecked(&index.sibling());
|
||||
path.push(node.into());
|
||||
index.move_up();
|
||||
}
|
||||
|
||||
Ok(path.into())
|
||||
}
|
||||
|
||||
/// Returns the value associated with the specified key.
|
||||
///
|
||||
/// If nothing was inserted into this tree for the specified key, [ZERO; 4] is returned.
|
||||
pub fn get_value(&self, key: RpoDigest) -> Word {
|
||||
match self.values.get(&key) {
|
||||
Some(value) => *value,
|
||||
None => EMPTY_WORD,
|
||||
}
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Inserts the provided value into the tree under the specified key and returns the value
|
||||
/// previously stored under this key.
|
||||
///
|
||||
/// If the value for the specified key was not previously set, [ZERO; 4] is returned.
|
||||
pub fn insert(&mut self, key: RpoDigest, value: Word) -> Word {
|
||||
// insert the value into the key-value map, and if nothing has changed, return
|
||||
let old_value = self.values.insert(key, value).unwrap_or(EMPTY_WORD);
|
||||
if old_value == value {
|
||||
return old_value;
|
||||
}
|
||||
|
||||
// determine the index for the value node; this index could have 3 different meanings:
|
||||
// - it points to a root of an empty subtree (excluding depth = 64); in this case, we can
|
||||
// replace the node with the value node immediately.
|
||||
// - it points to a node at the bottom tier (i.e., depth = 64); in this case, we need to
|
||||
// process bottom-tier insertion which will be handled by insert_node().
|
||||
// - it points to a leaf node; this node could be a node with the same key or a different
|
||||
// key with a common prefix; in the latter case, we'll need to move the leaf to a lower
|
||||
// tier; for this scenario the `leaf_key` will contain the key of the leaf node
|
||||
let (mut index, leaf_key) = self.get_insert_location(&key);
|
||||
|
||||
// if the returned index points to a leaf, and this leaf is for a different key, we need
|
||||
// to move the leaf to a lower tier
|
||||
if let Some(other_key) = leaf_key {
|
||||
if other_key != key {
|
||||
// determine how far down the tree should we move the existing leaf
|
||||
let common_prefix_len = get_common_prefix_tier(&key, &other_key);
|
||||
let depth = cmp::min(common_prefix_len + Self::TIER_SIZE, Self::MAX_DEPTH);
|
||||
|
||||
// move the leaf to the new location; this requires first removing the existing
|
||||
// index, re-computing node value, and inserting the node at a new location
|
||||
let other_index = key_to_index(&other_key, depth);
|
||||
let other_value = *self.values.get(&other_key).expect("no value for other key");
|
||||
self.upper_leaves.remove(&index).expect("other node key not in map");
|
||||
self.insert_node(other_index, other_key, other_value);
|
||||
|
||||
// the new leaf also needs to move down to the same tier
|
||||
index = key_to_index(&key, depth);
|
||||
}
|
||||
}
|
||||
|
||||
// insert the node and return the old value
|
||||
self.insert_node(index, key, value);
|
||||
old_value
|
||||
}
|
||||
|
||||
// ITERATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns an iterator over all inner nodes of this [TieredSmt] (i.e., nodes not at depths 16
|
||||
/// 32, 48, or 64).
|
||||
///
|
||||
/// The iterator order is unspecified.
|
||||
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
|
||||
self.nodes.iter().filter_map(|(index, node)| {
|
||||
if is_inner_node(index) {
|
||||
Some(InnerNodeInfo {
|
||||
value: node.into(),
|
||||
left: self.get_node_unchecked(&index.left_child()).into(),
|
||||
right: self.get_node_unchecked(&index.right_child()).into(),
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns an iterator over upper leaves (i.e., depth = 16, 32, or 48) for this [TieredSmt].
|
||||
///
|
||||
/// Each yielded item is a (node, key, value) tuple where key is a full un-truncated key (i.e.,
|
||||
/// with key[3] element unmodified).
|
||||
///
|
||||
/// The iterator order is unspecified.
|
||||
pub fn upper_leaves(&self) -> impl Iterator<Item = (RpoDigest, RpoDigest, Word)> + '_ {
|
||||
self.upper_leaves.iter().map(|(index, key)| {
|
||||
let node = self.get_node_unchecked(index);
|
||||
let value = self.get_value(*key);
|
||||
(node, *key, value)
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns an iterator over bottom leaves (i.e., depth = 64) of this [TieredSmt].
|
||||
///
|
||||
/// Each yielded item consists of the hash of the leaf and its contents, where contents is
|
||||
/// a vector containing key-value pairs of entries storied in this leaf. Note that keys are
|
||||
/// un-truncated keys (i.e., with key[3] element unmodified).
|
||||
///
|
||||
/// The iterator order is unspecified.
|
||||
pub fn bottom_leaves(&self) -> impl Iterator<Item = (RpoDigest, Vec<(RpoDigest, Word)>)> + '_ {
|
||||
self.bottom_leaves.values().map(|leaf| (leaf.hash(), leaf.contents()))
|
||||
}
|
||||
|
||||
// HELPER METHODS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Checks if the specified index is valid in the context of this Merkle tree.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// - The specified index depth is 0 or greater than 64.
|
||||
/// - The node for the specified index does not exists in the Merkle tree. This is possible
|
||||
/// when an ancestors of the specified index is a leaf node.
|
||||
fn validate_node_access(&self, index: NodeIndex) -> Result<(), MerkleError> {
|
||||
if index.is_root() {
|
||||
return Err(MerkleError::DepthTooSmall(index.depth()));
|
||||
} else if index.depth() > Self::MAX_DEPTH {
|
||||
return Err(MerkleError::DepthTooBig(index.depth() as u64));
|
||||
} else {
|
||||
// make sure that there are no leaf nodes in the ancestors of the index; since leaf
|
||||
// nodes can live at specific depth, we just need to check these depths.
|
||||
let tier = get_index_tier(&index);
|
||||
let mut tier_index = index;
|
||||
for &depth in Self::TIER_DEPTHS[..tier].iter().rev() {
|
||||
tier_index.move_up_to(depth);
|
||||
if self.upper_leaves.contains_key(&tier_index) {
|
||||
return Err(MerkleError::NodeNotInSet(index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns a node at the specified index. If the node does not exist at this index, a root
|
||||
/// for an empty subtree at the index's depth is returned.
|
||||
///
|
||||
/// Unlike [TieredSmt::get_node()] this does not perform any checks to verify that the returned
|
||||
/// node is valid in the context of this tree.
|
||||
fn get_node_unchecked(&self, index: &NodeIndex) -> RpoDigest {
|
||||
match self.nodes.get(index) {
|
||||
Some(node) => *node,
|
||||
None => EmptySubtreeRoots::empty_hashes(Self::MAX_DEPTH)[index.depth() as usize],
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an index at which a node for the specified key should be inserted. If a leaf node
|
||||
/// already exists at that index, returns the key associated with that leaf node.
|
||||
///
|
||||
/// In case the index falls into the bottom tier (depth = 64), leaf node key is not returned
|
||||
/// as the bottom tier may contain multiple key-value pairs in the same leaf.
|
||||
fn get_insert_location(&self, key: &RpoDigest) -> (NodeIndex, Option<RpoDigest>) {
|
||||
// traverse the tree from the root down checking nodes at tiers 16, 32, and 48. Return if
|
||||
// a node at any of the tiers is either a leaf or a root of an empty subtree.
|
||||
let mse = Word::from(key)[3].as_int();
|
||||
for depth in (Self::TIER_DEPTHS[0]..Self::MAX_DEPTH).step_by(Self::TIER_SIZE as usize) {
|
||||
let index = NodeIndex::new_unchecked(depth, mse >> (Self::MAX_DEPTH - depth));
|
||||
if let Some(leaf_key) = self.upper_leaves.get(&index) {
|
||||
return (index, Some(*leaf_key));
|
||||
} else if !self.nodes.contains_key(&index) {
|
||||
return (index, None);
|
||||
}
|
||||
}
|
||||
|
||||
// if we got here, that means all of the nodes checked so far are internal nodes, and
|
||||
// the new node would need to be inserted in the bottom tier.
|
||||
let index = NodeIndex::new_unchecked(Self::MAX_DEPTH, mse);
|
||||
(index, None)
|
||||
}
|
||||
|
||||
/// Inserts the provided key-value pair at the specified index and updates the root of this
|
||||
/// Merkle tree by recomputing the path to the root.
|
||||
fn insert_node(&mut self, mut index: NodeIndex, key: RpoDigest, value: Word) {
|
||||
let depth = index.depth();
|
||||
|
||||
// insert the key into index-key map and compute the new value of the node
|
||||
let mut node = if index.depth() == Self::MAX_DEPTH {
|
||||
// for the bottom tier, we add the key-value pair to the existing leaf, or create a
|
||||
// new leaf with this key-value pair
|
||||
self.bottom_leaves
|
||||
.entry(index.value())
|
||||
.and_modify(|leaves| leaves.add_value(key, value))
|
||||
.or_insert(BottomLeaf::new(key, value))
|
||||
.hash()
|
||||
} else {
|
||||
// for the upper tiers, we just update the index-key map and compute the value of the
|
||||
// node
|
||||
self.upper_leaves.insert(index, key);
|
||||
// the node value is computed as: hash(remaining_key || value, domain = depth)
|
||||
let remaining_path = get_remaining_path(key, depth.into());
|
||||
Rpo256::merge_in_domain(&[remaining_path, value.into()], depth.into())
|
||||
};
|
||||
|
||||
// insert the node and update the path from the node to the root
|
||||
for _ in 0..index.depth() {
|
||||
self.nodes.insert(index, node);
|
||||
let sibling = self.get_node_unchecked(&index.sibling());
|
||||
node = Rpo256::merge(&index.build_node(node, sibling));
|
||||
index.move_up();
|
||||
}
|
||||
|
||||
// update the root
|
||||
self.nodes.insert(NodeIndex::root(), node);
|
||||
self.root = node;
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for TieredSmt {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
root: EmptySubtreeRoots::empty_hashes(Self::MAX_DEPTH)[0],
|
||||
nodes: BTreeMap::new(),
|
||||
upper_leaves: BTreeMap::new(),
|
||||
bottom_leaves: BTreeMap::new(),
|
||||
values: BTreeMap::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// HELPER FUNCTIONS
|
||||
// ================================================================================================
|
||||
|
||||
/// Returns the remaining path for the specified key at the specified depth.
|
||||
///
|
||||
/// Remaining path is computed by setting n most significant bits of the key to zeros, where n is
|
||||
/// the specified depth.
|
||||
fn get_remaining_path(key: RpoDigest, depth: u32) -> RpoDigest {
|
||||
let mut key = Word::from(key);
|
||||
key[3] = if depth == 64 {
|
||||
ZERO
|
||||
} else {
|
||||
// remove `depth` bits from the most significant key element
|
||||
((key[3].as_int() << depth) >> depth).into()
|
||||
};
|
||||
key.into()
|
||||
}
|
||||
|
||||
/// Returns index for the specified key inserted at the specified depth.
|
||||
///
|
||||
/// The value for the key is computed by taking n most significant bits from the most significant
|
||||
/// element of the key, where n is the specified depth.
|
||||
fn key_to_index(key: &RpoDigest, depth: u8) -> NodeIndex {
|
||||
let mse = Word::from(key)[3].as_int();
|
||||
let value = match depth {
|
||||
16 | 32 | 48 | 64 => mse >> ((TieredSmt::MAX_DEPTH - depth) as u32),
|
||||
_ => unreachable!("invalid depth: {depth}"),
|
||||
};
|
||||
NodeIndex::new_unchecked(depth, value)
|
||||
}
|
||||
|
||||
/// Returns tiered common prefix length between the most significant elements of the provided keys.
|
||||
///
|
||||
/// Specifically:
|
||||
/// - returns 64 if the most significant elements are equal.
|
||||
/// - returns 48 if the common prefix is between 48 and 63 bits.
|
||||
/// - returns 32 if the common prefix is between 32 and 47 bits.
|
||||
/// - returns 16 if the common prefix is between 16 and 31 bits.
|
||||
/// - returns 0 if the common prefix is fewer than 16 bits.
|
||||
fn get_common_prefix_tier(key1: &RpoDigest, key2: &RpoDigest) -> u8 {
|
||||
let e1 = Word::from(key1)[3].as_int();
|
||||
let e2 = Word::from(key2)[3].as_int();
|
||||
let ex = (e1 ^ e2).leading_zeros() as u8;
|
||||
(ex / 16) * 16
|
||||
}
|
||||
|
||||
/// Returns a tier for the specified index.
|
||||
///
|
||||
/// The tiers are defined as follows:
|
||||
/// - Tier 0: depth 0 through 16 (inclusive).
|
||||
/// - Tier 1: depth 17 through 32 (inclusive).
|
||||
/// - Tier 2: depth 33 through 48 (inclusive).
|
||||
/// - Tier 3: depth 49 through 64 (inclusive).
|
||||
const fn get_index_tier(index: &NodeIndex) -> usize {
|
||||
debug_assert!(index.depth() <= TieredSmt::MAX_DEPTH, "invalid depth");
|
||||
match index.depth() {
|
||||
0..=16 => 0,
|
||||
17..=32 => 1,
|
||||
33..=48 => 2,
|
||||
_ => 3,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns true if the specified index is an index for an inner node (i.e., the depth is not 16,
|
||||
/// 32, 48, or 64).
|
||||
const fn is_inner_node(index: &NodeIndex) -> bool {
|
||||
!matches!(index.depth(), 16 | 32 | 48 | 64)
|
||||
}
|
||||
|
||||
// BOTTOM LEAF
|
||||
// ================================================================================================
|
||||
|
||||
/// Stores contents of the bottom leaf (i.e., leaf at depth = 64) in a [TieredSmt].
|
||||
///
|
||||
/// Bottom leaf can contain one or more key-value pairs all sharing the same 64-bit key prefix.
|
||||
/// The values are sorted by key to make sure the structure of the leaf is independent of the
|
||||
/// insertion order. This guarantees that a leaf with the same set of key-value pairs always has
|
||||
/// the same hash value.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
struct BottomLeaf {
|
||||
prefix: u64,
|
||||
values: BTreeMap<[u64; 4], Word>,
|
||||
}
|
||||
|
||||
impl BottomLeaf {
|
||||
/// Returns a new [BottomLeaf] with a single key-value pair added.
|
||||
pub fn new(key: RpoDigest, value: Word) -> Self {
|
||||
let prefix = Word::from(key)[3].as_int();
|
||||
let mut values = BTreeMap::new();
|
||||
let key = get_remaining_path(key, TieredSmt::MAX_DEPTH as u32);
|
||||
values.insert(key.into(), value);
|
||||
Self { prefix, values }
|
||||
}
|
||||
|
||||
/// Adds a new key-value pair to this leaf.
|
||||
pub fn add_value(&mut self, key: RpoDigest, value: Word) {
|
||||
let key = get_remaining_path(key, TieredSmt::MAX_DEPTH as u32);
|
||||
self.values.insert(key.into(), value);
|
||||
}
|
||||
|
||||
/// Computes a hash of this leaf.
|
||||
pub fn hash(&self) -> RpoDigest {
|
||||
let mut elements = Vec::with_capacity(self.values.len() * 2);
|
||||
for (key, val) in self.values.iter() {
|
||||
key.iter().for_each(|&v| elements.push(Felt::new(v)));
|
||||
elements.extend_from_slice(val);
|
||||
}
|
||||
// TODO: hash in domain
|
||||
Rpo256::hash_elements(&elements)
|
||||
}
|
||||
|
||||
/// Returns contents of this leaf as a vector of (key, value) pairs.
|
||||
///
|
||||
/// The keys are returned in their un-truncated form.
|
||||
pub fn contents(&self) -> Vec<(RpoDigest, Word)> {
|
||||
self.values
|
||||
.iter()
|
||||
.map(|(key, val)| {
|
||||
let key = RpoDigest::from([
|
||||
Felt::new(key[0]),
|
||||
Felt::new(key[1]),
|
||||
Felt::new(key[2]),
|
||||
Felt::new(self.prefix),
|
||||
]);
|
||||
(key, *val)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
441
src/merkle/tiered_smt/tests.rs
Normal file
441
src/merkle/tiered_smt/tests.rs
Normal file
|
@ -0,0 +1,441 @@
|
|||
use super::{
|
||||
super::{super::ONE, Felt, MerkleStore, WORD_SIZE, ZERO},
|
||||
get_remaining_path, EmptySubtreeRoots, InnerNodeInfo, NodeIndex, Rpo256, RpoDigest, TieredSmt,
|
||||
Vec, Word,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn tsmt_insert_one() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
|
||||
let value = [ONE; WORD_SIZE];
|
||||
|
||||
// since the tree is empty, the first node will be inserted at depth 16 and the index will be
|
||||
// 16 most significant bits of the key
|
||||
let index = NodeIndex::make(16, raw >> 48);
|
||||
let leaf_node = build_leaf_node(key, value, 16);
|
||||
let tree_root = store.set_node(smt.root().into(), index, leaf_node.into()).unwrap().root;
|
||||
|
||||
smt.insert(key, value);
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
// make sure the value was inserted, and the node is at the expected index
|
||||
assert_eq!(smt.get_value(key), value);
|
||||
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
|
||||
|
||||
// make sure the paths we get from the store and the tree match
|
||||
let expected_path = store.get_path(tree_root, index).unwrap();
|
||||
assert_eq!(smt.get_path(index).unwrap(), expected_path.path);
|
||||
|
||||
// make sure inner nodes match
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
assert_eq!(actual_nodes.len(), expected_nodes.len());
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
|
||||
// make sure leaves are returned correctly
|
||||
let mut leaves = smt.upper_leaves();
|
||||
assert_eq!(leaves.next(), Some((leaf_node, key, value)));
|
||||
assert_eq!(leaves.next(), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tsmt_insert_two_16() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// --- insert the first value ---------------------------------------------
|
||||
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
|
||||
let val_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key_a, val_a);
|
||||
|
||||
// --- insert the second value --------------------------------------------
|
||||
// the key for this value has the same 16-bit prefix as the key for the first value,
|
||||
// thus, on insertions, both values should be pushed to depth 32 tier
|
||||
let raw_b = 0b_10101010_10101010_10011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
|
||||
let val_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key_b, val_b);
|
||||
|
||||
// --- build Merkle store with equivalent data ----------------------------
|
||||
let mut tree_root = get_init_root();
|
||||
let index_a = NodeIndex::make(32, raw_a >> 32);
|
||||
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
|
||||
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
|
||||
|
||||
let index_b = NodeIndex::make(32, raw_b >> 32);
|
||||
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
|
||||
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
|
||||
|
||||
// --- verify that data is consistent between store and tree --------------
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key_a), val_a);
|
||||
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
|
||||
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
|
||||
|
||||
assert_eq!(smt.get_value(key_b), val_b);
|
||||
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
|
||||
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
|
||||
// make sure leaves are returned correctly
|
||||
let mut leaves = smt.upper_leaves();
|
||||
assert_eq!(leaves.next(), Some((leaf_node_a, key_a, val_a)));
|
||||
assert_eq!(leaves.next(), Some((leaf_node_b, key_b, val_b)));
|
||||
assert_eq!(leaves.next(), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tsmt_insert_two_32() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// --- insert the first value ---------------------------------------------
|
||||
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
|
||||
let val_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key_a, val_a);
|
||||
|
||||
// --- insert the second value --------------------------------------------
|
||||
// the key for this value has the same 32-bit prefix as the key for the first value,
|
||||
// thus, on insertions, both values should be pushed to depth 48 tier
|
||||
let raw_b = 0b_10101010_10101010_00011111_11111111_00010110_10010011_11100000_00000000_u64;
|
||||
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
|
||||
let val_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key_b, val_b);
|
||||
|
||||
// --- build Merkle store with equivalent data ----------------------------
|
||||
let mut tree_root = get_init_root();
|
||||
let index_a = NodeIndex::make(48, raw_a >> 16);
|
||||
let leaf_node_a = build_leaf_node(key_a, val_a, 48);
|
||||
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
|
||||
|
||||
let index_b = NodeIndex::make(48, raw_b >> 16);
|
||||
let leaf_node_b = build_leaf_node(key_b, val_b, 48);
|
||||
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
|
||||
|
||||
// --- verify that data is consistent between store and tree --------------
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key_a), val_a);
|
||||
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
|
||||
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
|
||||
|
||||
assert_eq!(smt.get_value(key_b), val_b);
|
||||
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
|
||||
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tsmt_insert_three() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// --- insert the first value ---------------------------------------------
|
||||
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
|
||||
let val_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key_a, val_a);
|
||||
|
||||
// --- insert the second value --------------------------------------------
|
||||
// the key for this value has the same 16-bit prefix as the key for the first value,
|
||||
// thus, on insertions, both values should be pushed to depth 32 tier
|
||||
let raw_b = 0b_10101010_10101010_10011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
|
||||
let val_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key_b, val_b);
|
||||
|
||||
// --- insert the third value ---------------------------------------------
|
||||
// the key for this value has the same 16-bit prefix as the keys for the first two,
|
||||
// values; thus, on insertions, it will be inserted into depth 32 tier, but will not
|
||||
// affect locations of the other two values
|
||||
let raw_c = 0b_10101010_10101010_11011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_c = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_c)]);
|
||||
let val_c = [Felt::new(3); WORD_SIZE];
|
||||
smt.insert(key_c, val_c);
|
||||
|
||||
// --- build Merkle store with equivalent data ----------------------------
|
||||
let mut tree_root = get_init_root();
|
||||
let index_a = NodeIndex::make(32, raw_a >> 32);
|
||||
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
|
||||
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
|
||||
|
||||
let index_b = NodeIndex::make(32, raw_b >> 32);
|
||||
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
|
||||
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
|
||||
|
||||
let index_c = NodeIndex::make(32, raw_c >> 32);
|
||||
let leaf_node_c = build_leaf_node(key_c, val_c, 32);
|
||||
tree_root = store.set_node(tree_root, index_c, leaf_node_c.into()).unwrap().root;
|
||||
|
||||
// --- verify that data is consistent between store and tree --------------
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key_a), val_a);
|
||||
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
|
||||
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
|
||||
|
||||
assert_eq!(smt.get_value(key_b), val_b);
|
||||
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
|
||||
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
|
||||
|
||||
assert_eq!(smt.get_value(key_c), val_c);
|
||||
assert_eq!(smt.get_node(index_c).unwrap(), leaf_node_c);
|
||||
let expected_path = store.get_path(tree_root, index_c).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_c).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tsmt_update() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// --- insert a value into the tree ---------------------------------------
|
||||
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
|
||||
let value_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key, value_a);
|
||||
|
||||
// --- update the value ---------------------------------------------------
|
||||
let value_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key, value_b);
|
||||
|
||||
// --- verify consistency -------------------------------------------------
|
||||
let mut tree_root = get_init_root();
|
||||
let index = NodeIndex::make(16, raw >> 48);
|
||||
let leaf_node = build_leaf_node(key, value_b, 16);
|
||||
tree_root = store.set_node(tree_root, index, leaf_node.into()).unwrap().root;
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key), value_b);
|
||||
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
|
||||
let expected_path = store.get_path(tree_root, index).unwrap().path;
|
||||
assert_eq!(smt.get_path(index).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
}
|
||||
|
||||
// BOTTOM TIER TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[test]
|
||||
fn tsmt_bottom_tier() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// common prefix for the keys
|
||||
let prefix = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
|
||||
// --- insert the first value ---------------------------------------------
|
||||
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(prefix)]);
|
||||
let val_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key_a, val_a);
|
||||
|
||||
// --- insert the second value --------------------------------------------
|
||||
// this key has the same 64-bit prefix and thus both values should end up in the same
|
||||
// node at depth 64
|
||||
let key_b = RpoDigest::from([ZERO, ONE, ONE, Felt::new(prefix)]);
|
||||
let val_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key_b, val_b);
|
||||
|
||||
// --- build Merkle store with equivalent data ----------------------------
|
||||
let index = NodeIndex::make(64, prefix);
|
||||
// to build bottom leaf we sort by key starting with the least significant element, thus
|
||||
// key_b is smaller than key_a.
|
||||
let leaf_node = build_bottom_leaf_node(&[key_b, key_a], &[val_b, val_a]);
|
||||
let mut tree_root = get_init_root();
|
||||
tree_root = store.set_node(tree_root, index, leaf_node.into()).unwrap().root;
|
||||
|
||||
// --- verify that data is consistent between store and tree --------------
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key_a), val_a);
|
||||
assert_eq!(smt.get_value(key_b), val_b);
|
||||
|
||||
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
|
||||
let expected_path = store.get_path(tree_root, index).unwrap().path;
|
||||
assert_eq!(smt.get_path(index).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
|
||||
// make sure leaves are returned correctly
|
||||
let mut leaves = smt.bottom_leaves();
|
||||
assert_eq!(leaves.next(), Some((leaf_node, vec![(key_b, val_b), (key_a, val_a)])));
|
||||
assert_eq!(leaves.next(), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tsmt_bottom_tier_two() {
|
||||
let mut smt = TieredSmt::default();
|
||||
let mut store = MerkleStore::default();
|
||||
|
||||
// --- insert the first value ---------------------------------------------
|
||||
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
|
||||
let val_a = [ONE; WORD_SIZE];
|
||||
smt.insert(key_a, val_a);
|
||||
|
||||
// --- insert the second value --------------------------------------------
|
||||
// the key for this value has the same 48-bit prefix as the key for the first value,
|
||||
// thus, on insertions, both should end up in different nodes at depth 64
|
||||
let raw_b = 0b_10101010_10101010_00011111_11111111_10010110_10010011_01100000_00000000_u64;
|
||||
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
|
||||
let val_b = [Felt::new(2); WORD_SIZE];
|
||||
smt.insert(key_b, val_b);
|
||||
|
||||
// --- build Merkle store with equivalent data ----------------------------
|
||||
let mut tree_root = get_init_root();
|
||||
let index_a = NodeIndex::make(64, raw_a);
|
||||
let leaf_node_a = build_bottom_leaf_node(&[key_a], &[val_a]);
|
||||
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
|
||||
|
||||
let index_b = NodeIndex::make(64, raw_b);
|
||||
let leaf_node_b = build_bottom_leaf_node(&[key_b], &[val_b]);
|
||||
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
|
||||
|
||||
// --- verify that data is consistent between store and tree --------------
|
||||
|
||||
assert_eq!(smt.root(), tree_root.into());
|
||||
|
||||
assert_eq!(smt.get_value(key_a), val_a);
|
||||
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
|
||||
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
|
||||
|
||||
assert_eq!(smt.get_value(key_b), val_b);
|
||||
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
|
||||
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
|
||||
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
|
||||
|
||||
// make sure inner nodes match - the store contains more entries because it keeps track of
|
||||
// all prior state - so, we don't check that the number of inner nodes is the same in both
|
||||
let expected_nodes = get_non_empty_nodes(&store);
|
||||
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
|
||||
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
|
||||
|
||||
// make sure leaves are returned correctly
|
||||
let mut leaves = smt.bottom_leaves();
|
||||
assert_eq!(leaves.next(), Some((leaf_node_b, vec![(key_b, val_b)])));
|
||||
assert_eq!(leaves.next(), Some((leaf_node_a, vec![(key_a, val_a)])));
|
||||
assert_eq!(leaves.next(), None);
|
||||
}
|
||||
|
||||
// ERROR TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[test]
|
||||
fn tsmt_node_not_available() {
|
||||
let mut smt = TieredSmt::default();
|
||||
|
||||
let raw = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
|
||||
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
|
||||
let value = [ONE; WORD_SIZE];
|
||||
|
||||
// build an index which is just below the inserted leaf node
|
||||
let index = NodeIndex::make(17, raw >> 47);
|
||||
|
||||
// since we haven't inserted the node yet, we should be able to get node and path to this index
|
||||
assert!(smt.get_node(index).is_ok());
|
||||
assert!(smt.get_path(index).is_ok());
|
||||
|
||||
smt.insert(key, value);
|
||||
|
||||
// but once the node is inserted, everything under it should be unavailable
|
||||
assert!(smt.get_node(index).is_err());
|
||||
assert!(smt.get_path(index).is_err());
|
||||
|
||||
let index = NodeIndex::make(32, raw >> 32);
|
||||
assert!(smt.get_node(index).is_err());
|
||||
assert!(smt.get_path(index).is_err());
|
||||
|
||||
let index = NodeIndex::make(34, raw >> 30);
|
||||
assert!(smt.get_node(index).is_err());
|
||||
assert!(smt.get_path(index).is_err());
|
||||
|
||||
let index = NodeIndex::make(50, raw >> 14);
|
||||
assert!(smt.get_node(index).is_err());
|
||||
assert!(smt.get_path(index).is_err());
|
||||
|
||||
let index = NodeIndex::make(64, raw);
|
||||
assert!(smt.get_node(index).is_err());
|
||||
assert!(smt.get_path(index).is_err());
|
||||
}
|
||||
|
||||
// HELPER FUNCTIONS
|
||||
// ================================================================================================
|
||||
|
||||
fn get_init_root() -> Word {
|
||||
EmptySubtreeRoots::empty_hashes(64)[0].into()
|
||||
}
|
||||
|
||||
fn build_leaf_node(key: RpoDigest, value: Word, depth: u8) -> RpoDigest {
|
||||
let remaining_path = get_remaining_path(key, depth as u32);
|
||||
Rpo256::merge_in_domain(&[remaining_path, value.into()], depth.into())
|
||||
}
|
||||
|
||||
fn build_bottom_leaf_node(keys: &[RpoDigest], values: &[Word]) -> RpoDigest {
|
||||
assert_eq!(keys.len(), values.len());
|
||||
|
||||
let mut elements = Vec::with_capacity(keys.len());
|
||||
for (key, val) in keys.iter().zip(values.iter()) {
|
||||
let mut key = Word::from(key);
|
||||
key[3] = ZERO;
|
||||
elements.extend_from_slice(&key);
|
||||
elements.extend_from_slice(val);
|
||||
}
|
||||
|
||||
Rpo256::hash_elements(&elements)
|
||||
}
|
||||
|
||||
fn get_non_empty_nodes(store: &MerkleStore) -> Vec<InnerNodeInfo> {
|
||||
store
|
||||
.inner_nodes()
|
||||
.filter(|node| !is_empty_subtree(&RpoDigest::from(node.value)))
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
fn is_empty_subtree(node: &RpoDigest) -> bool {
|
||||
EmptySubtreeRoots::empty_hashes(255).contains(&node)
|
||||
}
|
Loading…
Add table
Reference in a new issue