add sorted_pairs_to_leaves() and test for it

This commit is contained in:
Qyriad 2024-10-28 15:38:42 -06:00
parent b954bb5287
commit ecf358a19e

View file

@ -346,6 +346,146 @@ pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
///
/// The length `path` is guaranteed to be equal to `DEPTH`
fn path_and_leaf_to_opening(path: MerklePath, leaf: Self::Leaf) -> Self::Opening;
fn sorted_pairs_to_leaves(
pairs: Vec<(Self::Key, Self::Value)>,
) -> PrecomputedLeaves<Self::Leaf> {
let mut all_leaves = PrecomputedLeaves::default();
let mut buffer: Vec<(Self::Key, Self::Value)> = Default::default();
let mut iter = pairs.into_iter().peekable();
while let Some((key, value)) = iter.next() {
let col = Self::key_to_leaf_index(&key).index.value();
let next_col = iter.peek().map(|(key, _)| {
let index = Self::key_to_leaf_index(key);
index.index.value()
});
buffer.push((key, value));
if let Some(next_col) = next_col {
assert!(next_col >= col);
}
if next_col == Some(col) {
// Keep going in our buffer.
continue;
}
// Whether the next pair is a different column, or non-existent, we break off.
let leaf_pairs = mem::take(&mut buffer);
let leaf = Self::pairs_to_leaf(leaf_pairs);
let hash = Self::hash_leaf(&leaf);
all_leaves.nodes.insert(col, leaf);
all_leaves.subtrees.push(SubtreeLeaf { col, hash });
}
assert_eq!(buffer.len(), 0);
all_leaves
}
/// Builds Merkle nodes from a bottom layer of tuples of horizontal indices and their hashes,
/// sorted by their position.
///
/// The leaves are 'conceptual' leaves, simply being entities at the bottom of some subtree, not
/// [`Self::Leaf`].
///
/// # Panics
/// With debug assertions on, this function panics under invalid inputs: if `leaves` contains
/// more entries than can fit in a depth-8 subtree (more than 256), if `bottom_depth` is
/// lower in the tree than the specified maximum depth (`DEPTH`), or if `leaves` is not sorted.
// FIXME: more complete docstring.
fn build_subtree(
mut leaves: Vec<SubtreeLeaf>,
bottom_depth: u8,
) -> (BTreeMap<NodeIndex, InnerNode>, Vec<SubtreeLeaf>) {
debug_assert!(bottom_depth <= DEPTH);
debug_assert!(bottom_depth.is_multiple_of(&8));
debug_assert!(leaves.len() <= usize::pow(2, 8));
let subtree_root = bottom_depth - 8;
let mut inner_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let mut next_leaves: Vec<SubtreeLeaf> = Vec::with_capacity(leaves.len() / 2);
for next_depth in (subtree_root..bottom_depth).rev() {
debug_assert!(next_depth <= bottom_depth);
// `next_depth` is the stuff we're making.
// `current_depth` is the stuff we have.
let current_depth = next_depth + 1;
let mut iter = leaves.drain(..).peekable();
while let Some(first) = iter.next() {
// On non-continuous iterations, including the first iteration, `first_column` may
// be a left or right node. On subsequent continuous iterations, we will always call
// `iter.next()` twice.
// On non-continuous iterations (including the very first iteration), this column
// could be either on the left or the right. If the next iteration is not
// discontinuous with our right node, then the next iteration's
let is_right = first.col.is_odd();
let (left, right) = if is_right {
// Discontinuous iteration: we have no left node, so it must be empty.
let left = SubtreeLeaf {
col: first.col - 1,
hash: *EmptySubtreeRoots::entry(DEPTH, current_depth),
};
let right = first;
(left, right)
} else {
let left = first;
let right_col = first.col + 1;
let right = match iter.peek().copied() {
Some(SubtreeLeaf { col, .. }) if col == right_col => {
// Our inputs must be sorted.
debug_assert!(left.col <= col);
// The next leaf in the iterator is our sibling. Use it and consume it!
iter.next().unwrap()
},
// Otherwise, the leaves don't contain our sibling, so our sibling must be
// empty.
_ => SubtreeLeaf {
col: right_col,
hash: *EmptySubtreeRoots::entry(DEPTH, current_depth),
},
};
(left, right)
};
let index = NodeIndex::new_unchecked(current_depth, left.col).parent();
let node = InnerNode { left: left.hash, right: right.hash };
let hash = node.hash();
let &equivalent_empty_hash = EmptySubtreeRoots::entry(DEPTH, next_depth);
// If this hash is empty, then it doesn't become a new inner node, nor does it count
// as a leaf for the next depth.
if hash != equivalent_empty_hash {
inner_nodes.insert(index, node);
// FIXME: is it possible for this to end up not being sorted? I don't think so.
next_leaves.push(SubtreeLeaf { col: index.value(), hash });
}
}
// Stop borrowing `leaves`, so we can swap it.
// The iterator is empty at this point anyway.
drop(iter);
// After each depth, consider the stuff we just made the new "leaves", and empty the
// other collection.
mem::swap(&mut leaves, &mut next_leaves);
}
(inner_nodes, leaves)
}
}
// INNER NODE
@ -463,3 +603,119 @@ impl<const DEPTH: u8, K, V> MutationSet<DEPTH, K, V> {
self.new_root
}
}
// HELPERS
// ================================================================================================
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Default)]
pub struct SubtreeLeaf {
pub col: u64,
pub hash: RpoDigest,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PrecomputedLeaves<L> {
/// Literal leaves to be added to the sparse Merkle tree's internal mapping.
pub nodes: BTreeMap<u64, L>,
/// "Conceptual" leaves that will be used for computations.
pub subtrees: Vec<SubtreeLeaf>,
}
// Derive requires `L` to impl Default, even though we don't actually need that.
impl<L> Default for PrecomputedLeaves<L> {
fn default() -> Self {
Self {
nodes: Default::default(),
subtrees: Default::default(),
}
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod test {
use alloc::vec::Vec;
use super::SparseMerkleTree;
use crate::{
hash::rpo::RpoDigest,
merkle::{smt::SubtreeLeaf, Smt, SmtLeaf, SMT_DEPTH},
Felt, Word, EMPTY_WORD, ONE,
};
#[test]
fn test_sorted_pairs_to_leaves() {
let entries: Vec<(RpoDigest, Word)> = vec![
(RpoDigest::new([ONE, ONE, ONE, Felt::new(16)]), [ONE; 4]),
(RpoDigest::new([ONE, ONE, ONE, Felt::new(17)]), [ONE; 4]),
// Leaf index collision.
(RpoDigest::new([ONE, ONE, Felt::new(10), Felt::new(20)]), [ONE; 4]),
(RpoDigest::new([ONE, ONE, Felt::new(20), Felt::new(20)]), [ONE; 4]),
// Normal single leaf again.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(400)]), [ONE; 4]),
// Empty leaf.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(500)]), EMPTY_WORD),
];
let mut entries_iter = entries.iter().cloned();
let mut next_entry = || entries_iter.next().unwrap();
let control_leaves: Vec<SmtLeaf> = vec![
SmtLeaf::Single(next_entry()),
SmtLeaf::Single(next_entry()),
SmtLeaf::new_multiple(vec![next_entry(), next_entry()]).unwrap(),
SmtLeaf::Single(next_entry()),
SmtLeaf::new_empty(Smt::key_to_leaf_index(&next_entry().0)),
];
let control_subtree_leaves: Vec<SubtreeLeaf> = control_leaves
.iter()
.map(|leaf| {
let col = leaf.index().index.value();
let hash = leaf.hash();
SubtreeLeaf { col, hash }
})
.collect();
let test_subtree_leaves = Smt::sorted_pairs_to_leaves(entries).subtrees;
assert_eq!(control_subtree_leaves, test_subtree_leaves);
}
#[test]
fn test_build_subtree_from_leaves() {
const PAIR_COUNT: u64 = u64::pow(2, 8);
let entries: Vec<(RpoDigest, Word)> = (0..PAIR_COUNT)
.map(|i| {
let leaf_index = ((i as f64 / PAIR_COUNT as f64) * 255.0) as u64;
let key = RpoDigest::new([ONE, ONE, Felt::new(i), Felt::new(leaf_index)]);
let value = [ONE, ONE, ONE, Felt::new(i)];
(key, value)
})
.collect();
let control = Smt::with_entries(entries.clone()).unwrap();
let mut leaves: Vec<SubtreeLeaf> = entries
.iter()
.map(|(key, value)| {
let leaf = SmtLeaf::new_single(*key, *value);
let col = leaf.index().index.value();
let hash = leaf.hash();
SubtreeLeaf { col, hash }
})
.collect();
leaves.sort();
leaves.dedup_by_key(|leaf| leaf.col);
let (first_subtree, _) = Smt::build_subtree(leaves, SMT_DEPTH);
assert!(!first_subtree.is_empty());
for (index, node) in first_subtree.into_iter() {
let control = control.get_inner_node(index);
assert_eq!(
control, node,
"subtree-computed node at index {index:?} does not match control",
);
}
}
}