fix: compilation errors
This commit is contained in:
parent
53d52b8adc
commit
fe5cac9edc
9 changed files with 84 additions and 88 deletions
|
@ -206,7 +206,7 @@ fn sponge_bytes_with_remainder_length_wont_panic() {
|
||||||
// size.
|
// size.
|
||||||
//
|
//
|
||||||
// this is a preliminary test to the fuzzy-stress of proptest.
|
// this is a preliminary test to the fuzzy-stress of proptest.
|
||||||
Rpo256::hash(&vec![0; 113]);
|
Rpo256::hash(&[0; 113]);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -230,8 +230,8 @@ fn sponge_zeroes_collision() {
|
||||||
|
|
||||||
proptest! {
|
proptest! {
|
||||||
#[test]
|
#[test]
|
||||||
fn rpo256_wont_panic_with_arbitrary_input(ref vec in any::<Vec<u8>>()) {
|
fn rpo256_wont_panic_with_arbitrary_input(ref bytes in any::<Vec<u8>>()) {
|
||||||
Rpo256::hash(&vec);
|
Rpo256::hash(bytes);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -190,7 +190,7 @@ mod tests {
|
||||||
if value > (1 << depth) { // round up
|
if value > (1 << depth) { // round up
|
||||||
depth += 1;
|
depth += 1;
|
||||||
}
|
}
|
||||||
NodeIndex::new(depth, value.into()).unwrap()
|
NodeIndex::new(depth, value).unwrap()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -287,7 +287,7 @@ mod tests {
|
||||||
|
|
||||||
// leaves were copied correctly
|
// leaves were copied correctly
|
||||||
for (a, b) in tree.nodes.iter().skip(4).zip(LEAVES4.iter()) {
|
for (a, b) in tree.nodes.iter().skip(4).zip(LEAVES4.iter()) {
|
||||||
assert_eq!(*a, RpoDigest::from(*b));
|
assert_eq!(a, b);
|
||||||
}
|
}
|
||||||
|
|
||||||
let (root, node2, node3) = compute_internal_nodes();
|
let (root, node2, node3) = compute_internal_nodes();
|
||||||
|
@ -341,7 +341,7 @@ mod tests {
|
||||||
let value = 3;
|
let value = 3;
|
||||||
let new_node = int_to_leaf(9);
|
let new_node = int_to_leaf(9);
|
||||||
let mut expected_leaves = digests_to_words(&LEAVES8);
|
let mut expected_leaves = digests_to_words(&LEAVES8);
|
||||||
expected_leaves[value as usize] = new_node.into();
|
expected_leaves[value as usize] = new_node;
|
||||||
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
|
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
|
||||||
|
|
||||||
tree.update_leaf(value, new_node).unwrap();
|
tree.update_leaf(value, new_node).unwrap();
|
||||||
|
@ -408,8 +408,8 @@ mod tests {
|
||||||
let digest = RpoDigest::from(word);
|
let digest = RpoDigest::from(word);
|
||||||
|
|
||||||
// assert the addresses are different
|
// assert the addresses are different
|
||||||
let word_ptr = (&word).as_ptr() as *const u8;
|
let word_ptr = word.as_ptr() as *const u8;
|
||||||
let digest_ptr = (&digest).as_ptr() as *const u8;
|
let digest_ptr = digest.as_ptr() as *const u8;
|
||||||
assert_ne!(word_ptr, digest_ptr);
|
assert_ne!(word_ptr, digest_ptr);
|
||||||
|
|
||||||
// compare the bytes representation
|
// compare the bytes representation
|
||||||
|
|
|
@ -439,15 +439,15 @@ fn test_mmr_peaks_hash_less_than_16() {
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_mmr_peaks_hash_odd() {
|
fn test_mmr_peaks_hash_odd() {
|
||||||
let peaks: Vec<_> = (0..=17).map(|i| int_to_node(i)).collect();
|
let peaks: Vec<_> = (0..=17).map(int_to_node).collect();
|
||||||
|
|
||||||
let accumulator = MmrPeaks {
|
let accumulator = MmrPeaks {
|
||||||
num_leaves: (1 << peaks.len()) - 1,
|
num_leaves: (1 << peaks.len()) - 1,
|
||||||
peaks: peaks.clone(),
|
peaks: peaks.clone(),
|
||||||
};
|
};
|
||||||
|
|
||||||
// odd length bigger than 16 is padded to the next even nubmer
|
// odd length bigger than 16 is padded to the next even number
|
||||||
let mut expected_peaks = peaks.clone();
|
let mut expected_peaks = peaks;
|
||||||
expected_peaks.resize(18, RpoDigest::default());
|
expected_peaks.resize(18, RpoDigest::default());
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
accumulator.hash_peaks(),
|
accumulator.hash_peaks(),
|
||||||
|
@ -488,5 +488,5 @@ mod property_tests {
|
||||||
// ================================================================================================
|
// ================================================================================================
|
||||||
|
|
||||||
fn digests_to_elements(digests: &[RpoDigest]) -> Vec<Felt> {
|
fn digests_to_elements(digests: &[RpoDigest]) -> Vec<Felt> {
|
||||||
digests.iter().flat_map(|v| Word::from(v)).collect()
|
digests.iter().flat_map(Word::from).collect()
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,6 +1,5 @@
|
||||||
use super::{
|
use super::{
|
||||||
BTreeMap, BTreeSet, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, ValuePath, Vec,
|
BTreeMap, BTreeSet, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, ValuePath, Vec, ZERO,
|
||||||
Word, EMPTY_WORD,
|
|
||||||
};
|
};
|
||||||
use crate::utils::{format, string::String, word_to_hex};
|
use crate::utils::{format, string::String, word_to_hex};
|
||||||
use core::fmt;
|
use core::fmt;
|
||||||
|
@ -15,7 +14,7 @@ mod tests;
|
||||||
const ROOT_INDEX: NodeIndex = NodeIndex::root();
|
const ROOT_INDEX: NodeIndex = NodeIndex::root();
|
||||||
|
|
||||||
/// An RpoDigest consisting of 4 ZERO elements.
|
/// An RpoDigest consisting of 4 ZERO elements.
|
||||||
const EMPTY_DIGEST: RpoDigest = RpoDigest::new(EMPTY_WORD);
|
const EMPTY_DIGEST: RpoDigest = RpoDigest::new([ZERO; 4]);
|
||||||
|
|
||||||
// PARTIAL MERKLE TREE
|
// PARTIAL MERKLE TREE
|
||||||
// ================================================================================================
|
// ================================================================================================
|
||||||
|
@ -50,7 +49,7 @@ impl PartialMerkleTree {
|
||||||
// CONSTRUCTORS
|
// CONSTRUCTORS
|
||||||
// --------------------------------------------------------------------------------------------
|
// --------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
/// Returns a new emply [PartialMerkleTree].
|
/// Returns a new empty [PartialMerkleTree].
|
||||||
pub fn new() -> Self {
|
pub fn new() -> Self {
|
||||||
PartialMerkleTree {
|
PartialMerkleTree {
|
||||||
max_depth: 0,
|
max_depth: 0,
|
||||||
|
@ -108,7 +107,7 @@ impl PartialMerkleTree {
|
||||||
paths.push((
|
paths.push((
|
||||||
leaf,
|
leaf,
|
||||||
ValuePath {
|
ValuePath {
|
||||||
value: *self.get_node(leaf).expect("Failed to get leaf node"),
|
value: self.get_node(leaf).expect("Failed to get leaf node"),
|
||||||
path: self.get_path(leaf).expect("Failed to get path"),
|
path: self.get_path(leaf).expect("Failed to get path"),
|
||||||
},
|
},
|
||||||
));
|
));
|
||||||
|
@ -142,7 +141,7 @@ impl PartialMerkleTree {
|
||||||
index.move_up();
|
index.move_up();
|
||||||
let sibling =
|
let sibling =
|
||||||
self.nodes.get(&sibling_index).cloned().expect("Sibling node not in the map");
|
self.nodes.get(&sibling_index).cloned().expect("Sibling node not in the map");
|
||||||
path.push(Word::from(sibling));
|
path.push(sibling);
|
||||||
}
|
}
|
||||||
Ok(MerklePath::new(path))
|
Ok(MerklePath::new(path))
|
||||||
}
|
}
|
||||||
|
@ -189,11 +188,11 @@ impl PartialMerkleTree {
|
||||||
|
|
||||||
// add provided node and its sibling to the nodes map
|
// add provided node and its sibling to the nodes map
|
||||||
self.nodes.insert(index_value, value);
|
self.nodes.insert(index_value, value);
|
||||||
self.nodes.insert(sibling_node_index, path[0].into());
|
self.nodes.insert(sibling_node_index, path[0]);
|
||||||
|
|
||||||
// traverse to the root, updating the nodes
|
// traverse to the root, updating the nodes
|
||||||
let mut index_value = index_value;
|
let mut index_value = index_value;
|
||||||
let node = Rpo256::merge(&index_value.build_node(value, path[0].into()));
|
let node = Rpo256::merge(&index_value.build_node(value, path[0]));
|
||||||
let root = path.iter().skip(1).copied().fold(node, |node, hash| {
|
let root = path.iter().skip(1).copied().fold(node, |node, hash| {
|
||||||
index_value.move_up();
|
index_value.move_up();
|
||||||
// insert calculated node to the nodes map
|
// insert calculated node to the nodes map
|
||||||
|
@ -215,11 +214,11 @@ impl PartialMerkleTree {
|
||||||
// - New node can be a calculated node or a "sibling" node from a Merkle Path:
|
// - New node can be a calculated node or a "sibling" node from a Merkle Path:
|
||||||
// --- Calculated node, obviously, never can be a leaf.
|
// --- Calculated node, obviously, never can be a leaf.
|
||||||
// --- Sibling node can be only a leaf, because otherwise it is not a new node.
|
// --- Sibling node can be only a leaf, because otherwise it is not a new node.
|
||||||
if self.nodes.insert(sibling_node, hash.into()).is_none() {
|
if self.nodes.insert(sibling_node, hash).is_none() {
|
||||||
self.leaves.insert(sibling_node);
|
self.leaves.insert(sibling_node);
|
||||||
}
|
}
|
||||||
|
|
||||||
Rpo256::merge(&index_value.build_node(node, hash.into()))
|
Rpo256::merge(&index_value.build_node(node, hash))
|
||||||
});
|
});
|
||||||
|
|
||||||
// if the path set is empty (the root is all ZEROs), set the root to the root of the added
|
// if the path set is empty (the root is all ZEROs), set the root to the root of the added
|
||||||
|
@ -227,7 +226,7 @@ impl PartialMerkleTree {
|
||||||
if self.root() == EMPTY_DIGEST {
|
if self.root() == EMPTY_DIGEST {
|
||||||
self.nodes.insert(ROOT_INDEX, root);
|
self.nodes.insert(ROOT_INDEX, root);
|
||||||
} else if self.root() != root {
|
} else if self.root() != root {
|
||||||
return Err(MerkleError::ConflictingRoots([*self.root(), *root].to_vec()));
|
return Err(MerkleError::ConflictingRoots([self.root(), root].to_vec()));
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
use super::{
|
use super::{
|
||||||
super::{int_to_node, MerkleStore, MerkleTree, NodeIndex, PartialMerkleTree},
|
super::{digests_to_words, int_to_node, MerkleStore, MerkleTree, NodeIndex, PartialMerkleTree},
|
||||||
ValuePath, Vec, Word,
|
RpoDigest, ValuePath, Vec,
|
||||||
};
|
};
|
||||||
|
|
||||||
// TEST DATA
|
// TEST DATA
|
||||||
|
@ -18,7 +18,7 @@ const NODE31: NodeIndex = NodeIndex::new_unchecked(3, 1);
|
||||||
const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2);
|
const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2);
|
||||||
const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
|
const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
|
||||||
|
|
||||||
const VALUES8: [Word; 8] = [
|
const VALUES8: [RpoDigest; 8] = [
|
||||||
int_to_node(30),
|
int_to_node(30),
|
||||||
int_to_node(31),
|
int_to_node(31),
|
||||||
int_to_node(32),
|
int_to_node(32),
|
||||||
|
@ -44,22 +44,21 @@ const VALUES8: [Word; 8] = [
|
||||||
// (30) (31) (32) (33) (34) (35) (36) (37)
|
// (30) (31) (32) (33) (34) (35) (36) (37)
|
||||||
//
|
//
|
||||||
// Where node number is a concatenation of its depth and index. For example, node with
|
// Where node number is a concatenation of its depth and index. For example, node with
|
||||||
// NodeIndex(3, 5) will be labled as `35`. Leaves of the tree are shown as nodes with parenthesis
|
// NodeIndex(3, 5) will be labeled as `35`. Leaves of the tree are shown as nodes with parenthesis
|
||||||
// (33).
|
// (33).
|
||||||
|
|
||||||
/// Checks that root returned by `root()` function is equal to the expected one.
|
/// Checks that root returned by `root()` function is equal to the expected one.
|
||||||
#[test]
|
#[test]
|
||||||
fn get_root() {
|
fn get_root() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
|
|
||||||
let pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
assert_eq!(pmt.root(), expected_root.into());
|
assert_eq!(pmt.root(), expected_root);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This test checks correctness of the `add_path()` and `get_path()` functions. First it creates a
|
/// This test checks correctness of the `add_path()` and `get_path()` functions. First it creates a
|
||||||
|
@ -67,7 +66,7 @@ fn get_root() {
|
||||||
/// it checks that paths returned by `get_path()` function are equal to the expected ones.
|
/// it checks that paths returned by `get_path()` function are equal to the expected ones.
|
||||||
#[test]
|
#[test]
|
||||||
fn add_and_get_paths() {
|
fn add_and_get_paths() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
@ -76,10 +75,8 @@ fn add_and_get_paths() {
|
||||||
let expected_path22 = ms.get_path(expected_root, NODE22).unwrap();
|
let expected_path22 = ms.get_path(expected_root, NODE22).unwrap();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::new();
|
let mut pmt = PartialMerkleTree::new();
|
||||||
pmt.add_path(3, expected_path33.value.into(), expected_path33.path.clone())
|
pmt.add_path(3, expected_path33.value, expected_path33.path.clone()).unwrap();
|
||||||
.unwrap();
|
pmt.add_path(2, expected_path22.value, expected_path22.path.clone()).unwrap();
|
||||||
pmt.add_path(2, expected_path22.value.into(), expected_path22.path.clone())
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let path33 = pmt.get_path(NODE33).unwrap();
|
let path33 = pmt.get_path(NODE33).unwrap();
|
||||||
let path22 = pmt.get_path(NODE22).unwrap();
|
let path22 = pmt.get_path(NODE22).unwrap();
|
||||||
|
@ -87,58 +84,58 @@ fn add_and_get_paths() {
|
||||||
|
|
||||||
assert_eq!(expected_path33.path, path33);
|
assert_eq!(expected_path33.path, path33);
|
||||||
assert_eq!(expected_path22.path, path22);
|
assert_eq!(expected_path22.path, path22);
|
||||||
assert_eq!(expected_root, *actual_root);
|
assert_eq!(expected_root, actual_root);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Checks that function `get_node` used on nodes 10 and 32 returns expected values.
|
/// Checks that function `get_node` used on nodes 10 and 32 returns expected values.
|
||||||
#[test]
|
#[test]
|
||||||
fn get_node() {
|
fn get_node() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
|
|
||||||
let pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
assert_eq!(ms.get_node(expected_root, NODE32).unwrap(), *pmt.get_node(NODE32).unwrap());
|
assert_eq!(ms.get_node(expected_root, NODE32).unwrap(), pmt.get_node(NODE32).unwrap());
|
||||||
assert_eq!(ms.get_node(expected_root, NODE10).unwrap(), *pmt.get_node(NODE10).unwrap());
|
assert_eq!(ms.get_node(expected_root, NODE10).unwrap(), pmt.get_node(NODE10).unwrap());
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Updates leaves of the PMT using `update_leaf()` function and checks that new root of the tree
|
/// Updates leaves of the PMT using `update_leaf()` function and checks that new root of the tree
|
||||||
/// is equal to the expected one.
|
/// is equal to the expected one.
|
||||||
#[test]
|
#[test]
|
||||||
fn update_leaf() {
|
fn update_leaf() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let root = mt.root();
|
let root = mt.root();
|
||||||
|
|
||||||
let mut ms = MerkleStore::from(&mt);
|
let mut ms = MerkleStore::from(&mt);
|
||||||
let path33 = ms.get_path(root, NODE33).unwrap();
|
let path33 = ms.get_path(root, NODE33).unwrap();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
let new_value32 = int_to_node(132);
|
let new_value32 = int_to_node(132);
|
||||||
let expected_root = ms.set_node(root, NODE32, new_value32).unwrap().root;
|
let expected_root = ms.set_node(root, NODE32, new_value32).unwrap().root;
|
||||||
|
|
||||||
pmt.update_leaf(NODE32, new_value32.into()).unwrap();
|
pmt.update_leaf(NODE32, new_value32).unwrap();
|
||||||
let actual_root = pmt.root();
|
let actual_root = pmt.root();
|
||||||
|
|
||||||
assert_eq!(expected_root, *actual_root);
|
assert_eq!(expected_root, actual_root);
|
||||||
|
|
||||||
let new_value20 = int_to_node(120);
|
let new_value20 = int_to_node(120);
|
||||||
let expected_root = ms.set_node(expected_root, NODE20, new_value20).unwrap().root;
|
let expected_root = ms.set_node(expected_root, NODE20, new_value20).unwrap().root;
|
||||||
|
|
||||||
pmt.update_leaf(NODE20, new_value20.into()).unwrap();
|
pmt.update_leaf(NODE20, new_value20).unwrap();
|
||||||
let actual_root = pmt.root();
|
let actual_root = pmt.root();
|
||||||
|
|
||||||
assert_eq!(expected_root, *actual_root);
|
assert_eq!(expected_root, actual_root);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Checks that paths of the PMT returned by `paths()` function are equal to the expected ones.
|
/// Checks that paths of the PMT returned by `paths()` function are equal to the expected ones.
|
||||||
#[test]
|
#[test]
|
||||||
fn get_paths() {
|
fn get_paths() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
@ -147,8 +144,8 @@ fn get_paths() {
|
||||||
let path22 = ms.get_path(expected_root, NODE22).unwrap();
|
let path22 = ms.get_path(expected_root, NODE22).unwrap();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::new();
|
let mut pmt = PartialMerkleTree::new();
|
||||||
pmt.add_path(3, path33.value.into(), path33.path.clone()).unwrap();
|
pmt.add_path(3, path33.value, path33.path).unwrap();
|
||||||
pmt.add_path(2, path22.value.into(), path22.path.clone()).unwrap();
|
pmt.add_path(2, path22.value, path22.path).unwrap();
|
||||||
// After PMT creation with path33 (33; 32, 20, 11) and path22 (22; 23, 10) we will have this
|
// After PMT creation with path33 (33; 32, 20, 11) and path22 (22; 23, 10) we will have this
|
||||||
// tree:
|
// tree:
|
||||||
//
|
//
|
||||||
|
@ -170,7 +167,7 @@ fn get_paths() {
|
||||||
(
|
(
|
||||||
leaf,
|
leaf,
|
||||||
ValuePath {
|
ValuePath {
|
||||||
value: mt.get_node(leaf).unwrap().into(),
|
value: mt.get_node(leaf).unwrap(),
|
||||||
path: mt.get_path(leaf).unwrap(),
|
path: mt.get_path(leaf).unwrap(),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
@ -185,7 +182,7 @@ fn get_paths() {
|
||||||
// Checks correctness of leaves determination when using the `leaves()` function.
|
// Checks correctness of leaves determination when using the `leaves()` function.
|
||||||
#[test]
|
#[test]
|
||||||
fn leaves() {
|
fn leaves() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
@ -193,7 +190,7 @@ fn leaves() {
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
let path22 = ms.get_path(expected_root, NODE22).unwrap();
|
let path22 = ms.get_path(expected_root, NODE22).unwrap();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
// After PMT creation with path33 (33; 32, 20, 11) we will have this tree:
|
// After PMT creation with path33 (33; 32, 20, 11) we will have this tree:
|
||||||
//
|
//
|
||||||
// ______root______
|
// ______root______
|
||||||
|
@ -206,17 +203,17 @@ fn leaves() {
|
||||||
//
|
//
|
||||||
// Which have leaf nodes 11, 20, 32 and 33.
|
// Which have leaf nodes 11, 20, 32 and 33.
|
||||||
|
|
||||||
let value11 = mt.get_node(NODE11).unwrap().into();
|
let value11 = mt.get_node(NODE11).unwrap();
|
||||||
let value20 = mt.get_node(NODE20).unwrap().into();
|
let value20 = mt.get_node(NODE20).unwrap();
|
||||||
let value32 = mt.get_node(NODE32).unwrap().into();
|
let value32 = mt.get_node(NODE32).unwrap();
|
||||||
let value33 = mt.get_node(NODE33).unwrap().into();
|
let value33 = mt.get_node(NODE33).unwrap();
|
||||||
|
|
||||||
let leaves = vec![(NODE11, value11), (NODE20, value20), (NODE32, value32), (NODE33, value33)];
|
let leaves = vec![(NODE11, value11), (NODE20, value20), (NODE32, value32), (NODE33, value33)];
|
||||||
|
|
||||||
let expected_leaves = leaves.iter().map(|&tuple| tuple);
|
let expected_leaves = leaves.iter().copied();
|
||||||
assert!(expected_leaves.eq(pmt.leaves()));
|
assert!(expected_leaves.eq(pmt.leaves()));
|
||||||
|
|
||||||
pmt.add_path(2, path22.value.into(), path22.path).unwrap();
|
pmt.add_path(2, path22.value, path22.path).unwrap();
|
||||||
// After adding the path22 (22; 23, 10) to the existing PMT we will have this tree:
|
// After adding the path22 (22; 23, 10) to the existing PMT we will have this tree:
|
||||||
//
|
//
|
||||||
// ______root______
|
// ______root______
|
||||||
|
@ -229,11 +226,11 @@ fn leaves() {
|
||||||
//
|
//
|
||||||
// Which have leaf nodes 20, 22, 23, 32 and 33.
|
// Which have leaf nodes 20, 22, 23, 32 and 33.
|
||||||
|
|
||||||
let value20 = mt.get_node(NODE20).unwrap().into();
|
let value20 = mt.get_node(NODE20).unwrap();
|
||||||
let value22 = mt.get_node(NODE22).unwrap().into();
|
let value22 = mt.get_node(NODE22).unwrap();
|
||||||
let value23 = mt.get_node(NODE23).unwrap().into();
|
let value23 = mt.get_node(NODE23).unwrap();
|
||||||
let value32 = mt.get_node(NODE32).unwrap().into();
|
let value32 = mt.get_node(NODE32).unwrap();
|
||||||
let value33 = mt.get_node(NODE33).unwrap().into();
|
let value33 = mt.get_node(NODE33).unwrap();
|
||||||
|
|
||||||
let leaves = vec![
|
let leaves = vec![
|
||||||
(NODE20, value20),
|
(NODE20, value20),
|
||||||
|
@ -243,7 +240,7 @@ fn leaves() {
|
||||||
(NODE33, value33),
|
(NODE33, value33),
|
||||||
];
|
];
|
||||||
|
|
||||||
let expected_leaves = leaves.iter().map(|&tuple| tuple);
|
let expected_leaves = leaves.iter().copied();
|
||||||
assert!(expected_leaves.eq(pmt.leaves()));
|
assert!(expected_leaves.eq(pmt.leaves()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -254,22 +251,22 @@ fn err_add_path() {
|
||||||
let path22 = vec![int_to_node(4), int_to_node(5)].into();
|
let path22 = vec![int_to_node(4), int_to_node(5)].into();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::new();
|
let mut pmt = PartialMerkleTree::new();
|
||||||
pmt.add_path(3, int_to_node(6).into(), path33).unwrap();
|
pmt.add_path(3, int_to_node(6), path33).unwrap();
|
||||||
|
|
||||||
assert!(pmt.add_path(2, int_to_node(7).into(), path22).is_err());
|
assert!(pmt.add_path(2, int_to_node(7), path22).is_err());
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Checks that the request of the node which is not in the PMT will cause an error.
|
/// Checks that the request of the node which is not in the PMT will cause an error.
|
||||||
#[test]
|
#[test]
|
||||||
fn err_get_node() {
|
fn err_get_node() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
|
|
||||||
let pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
assert!(pmt.get_node(NODE22).is_err());
|
assert!(pmt.get_node(NODE22).is_err());
|
||||||
assert!(pmt.get_node(NODE23).is_err());
|
assert!(pmt.get_node(NODE23).is_err());
|
||||||
|
@ -280,14 +277,14 @@ fn err_get_node() {
|
||||||
/// Checks that the request of the path from the leaf which is not in the PMT will cause an error.
|
/// Checks that the request of the path from the leaf which is not in the PMT will cause an error.
|
||||||
#[test]
|
#[test]
|
||||||
fn err_get_path() {
|
fn err_get_path() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
|
|
||||||
let pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
assert!(pmt.get_path(NODE22).is_err());
|
assert!(pmt.get_path(NODE22).is_err());
|
||||||
assert!(pmt.get_path(NODE23).is_err());
|
assert!(pmt.get_path(NODE23).is_err());
|
||||||
|
@ -297,17 +294,17 @@ fn err_get_path() {
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn err_update_leaf() {
|
fn err_update_leaf() {
|
||||||
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
|
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
|
||||||
let expected_root = mt.root();
|
let expected_root = mt.root();
|
||||||
|
|
||||||
let ms = MerkleStore::from(&mt);
|
let ms = MerkleStore::from(&mt);
|
||||||
|
|
||||||
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
let path33 = ms.get_path(expected_root, NODE33).unwrap();
|
||||||
|
|
||||||
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value.into(), path33.path)]).unwrap();
|
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
|
||||||
|
|
||||||
assert!(pmt.update_leaf(NODE22, int_to_node(22).into()).is_err());
|
assert!(pmt.update_leaf(NODE22, int_to_node(22)).is_err());
|
||||||
assert!(pmt.update_leaf(NODE23, int_to_node(23).into()).is_err());
|
assert!(pmt.update_leaf(NODE23, int_to_node(23)).is_err());
|
||||||
assert!(pmt.update_leaf(NODE30, int_to_node(30).into()).is_err());
|
assert!(pmt.update_leaf(NODE30, int_to_node(30)).is_err());
|
||||||
assert!(pmt.update_leaf(NODE31, int_to_node(31).into()).is_err());
|
assert!(pmt.update_leaf(NODE31, int_to_node(31)).is_err());
|
||||||
}
|
}
|
||||||
|
|
|
@ -354,35 +354,35 @@ mod tests {
|
||||||
let m = Rpo256::merge(&[i, j]);
|
let m = Rpo256::merge(&[i, j]);
|
||||||
let n = Rpo256::merge(&[k, l]);
|
let n = Rpo256::merge(&[k, l]);
|
||||||
|
|
||||||
let root = Rpo256::merge(&[m.into(), n.into()]);
|
let root = Rpo256::merge(&[m, n]);
|
||||||
|
|
||||||
let mut set = MerklePathSet::new(3);
|
let mut set = MerklePathSet::new(3);
|
||||||
|
|
||||||
let value = b;
|
let value = b;
|
||||||
let index = 1;
|
let index = 1;
|
||||||
let path = MerklePath::new([a, j, n].to_vec());
|
let path = MerklePath::new([a, j, n].to_vec());
|
||||||
set.add_path(index, value.into(), path.clone()).unwrap();
|
set.add_path(index, value.into(), path).unwrap();
|
||||||
assert_eq!(*value, set.get_leaf(index).unwrap());
|
assert_eq!(*value, set.get_leaf(index).unwrap());
|
||||||
assert_eq!(root, set.root());
|
assert_eq!(root, set.root());
|
||||||
|
|
||||||
let value = e;
|
let value = e;
|
||||||
let index = 4;
|
let index = 4;
|
||||||
let path = MerklePath::new([f.into(), l.into(), m.into()].to_vec());
|
let path = MerklePath::new([f, l, m].to_vec());
|
||||||
set.add_path(index, value.into(), path.clone()).unwrap();
|
set.add_path(index, value.into(), path).unwrap();
|
||||||
assert_eq!(*value, set.get_leaf(index).unwrap());
|
assert_eq!(*value, set.get_leaf(index).unwrap());
|
||||||
assert_eq!(root, set.root());
|
assert_eq!(root, set.root());
|
||||||
|
|
||||||
let value = a;
|
let value = a;
|
||||||
let index = 0;
|
let index = 0;
|
||||||
let path = MerklePath::new([b.into(), j.into(), n.into()].to_vec());
|
let path = MerklePath::new([b, j, n].to_vec());
|
||||||
set.add_path(index, value.into(), path.clone()).unwrap();
|
set.add_path(index, value.into(), path).unwrap();
|
||||||
assert_eq!(*value, set.get_leaf(index).unwrap());
|
assert_eq!(*value, set.get_leaf(index).unwrap());
|
||||||
assert_eq!(root, set.root());
|
assert_eq!(root, set.root());
|
||||||
|
|
||||||
let value = h;
|
let value = h;
|
||||||
let index = 7;
|
let index = 7;
|
||||||
let path = MerklePath::new([g.into(), k.into(), m.into()].to_vec());
|
let path = MerklePath::new([g, k, m].to_vec());
|
||||||
set.add_path(index, value.into(), path.clone()).unwrap();
|
set.add_path(index, value.into(), path).unwrap();
|
||||||
assert_eq!(*value, set.get_leaf(index).unwrap());
|
assert_eq!(*value, set.get_leaf(index).unwrap());
|
||||||
assert_eq!(root, set.root());
|
assert_eq!(root, set.root());
|
||||||
}
|
}
|
||||||
|
|
|
@ -203,7 +203,7 @@ fn small_tree_opening_is_consistent() {
|
||||||
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
|
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
|
||||||
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
|
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
|
||||||
|
|
||||||
assert_eq!(tree.root(), RpoDigest::from(k));
|
assert_eq!(tree.root(), k);
|
||||||
|
|
||||||
let cases: Vec<(u8, u64, Vec<RpoDigest>)> = vec![
|
let cases: Vec<(u8, u64, Vec<RpoDigest>)> = vec![
|
||||||
(3, 0, vec![b.into(), f, j]),
|
(3, 0, vec![b.into(), f, j]),
|
||||||
|
|
|
@ -432,10 +432,10 @@ fn build_bottom_leaf_node(keys: &[RpoDigest], values: &[Word]) -> RpoDigest {
|
||||||
fn get_non_empty_nodes(store: &MerkleStore) -> Vec<InnerNodeInfo> {
|
fn get_non_empty_nodes(store: &MerkleStore) -> Vec<InnerNodeInfo> {
|
||||||
store
|
store
|
||||||
.inner_nodes()
|
.inner_nodes()
|
||||||
.filter(|node| !is_empty_subtree(&RpoDigest::from(node.value)))
|
.filter(|node| !is_empty_subtree(&node.value))
|
||||||
.collect::<Vec<_>>()
|
.collect::<Vec<_>>()
|
||||||
}
|
}
|
||||||
|
|
||||||
fn is_empty_subtree(node: &RpoDigest) -> bool {
|
fn is_empty_subtree(node: &RpoDigest) -> bool {
|
||||||
EmptySubtreeRoots::empty_hashes(255).contains(&node)
|
EmptySubtreeRoots::empty_hashes(255).contains(node)
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Reference in a new issue