Compare commits

..

8 commits

Author SHA1 Message Date
5ab7980fbc smt: change SimpleSmt::open() to return a sparse path 2025-04-07 16:29:43 +02:00
5685f6d4b6 SimpleSmt: do not assume that Merkle paths Deref to Vec in tests
This is in preparation for the next commit, where we change
`SimpleSmt::open()` to return a `SparseMerklePath`, which cannot
dereference to a Vec.
2025-04-07 16:29:43 +02:00
80bd9af671 smt: add SparseMerklePath, a compact representation of MerklePath 2025-04-07 16:29:43 +02:00
22c19983ac MerklePath: add clarity getters for API parity with future SparseMerklePath
This adds `MerklePath::at_depth()` and `MerklePath::at_idx()`, both for
clarity and for API parity with `SparseMerklePath` in the next commit.
2025-04-04 15:17:21 +02:00
d524543899 MerklePath: document indexing order of nodes
I've left the iteration order of `MerklePath::inner_nodes()`
unspecified, but other methods of iteration and indexing are now
specified to be in order of deepest to shallowest.
2025-04-04 15:17:21 +02:00
aa386c67a4 MerkleTree: use new NodeIndex::proof_indices() to resolve TODO 2025-04-04 15:17:21 +02:00
07bda60233 smt: refactor MerklePath logic
Computation of the correct node indices to get is moved to
`NodeIndex::proof_indices()`, and getting a node's index based on its
parent is generalized into `SparseMerkleTree::get_hash()`.
2025-04-04 15:17:21 +02:00
5eb9a14c40 PartialSmt: fix misleading variable names 2025-04-04 15:17:21 +02:00
10 changed files with 339 additions and 181 deletions

View file

@ -1,6 +1,5 @@
## 0.15.0 (TBD)
- Added default constructors to `MmrPeaks` and `PartialMmr` (#409).
## 0.14.0 (2025-03-15)

14
Cargo.lock generated
View file

@ -254,7 +254,7 @@ dependencies = [
"clap",
"criterion-plot",
"is-terminal",
"itertools 0.10.5",
"itertools",
"num-traits",
"once_cell",
"oorandom",
@ -275,7 +275,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b50826342786a51a89e2da3a28f1c32b06e387201bc2d19791f622c673706b1"
dependencies = [
"cast",
"itertools 0.10.5",
"itertools",
]
[[package]]
@ -453,15 +453,6 @@ dependencies = [
"either",
]
[[package]]
name = "itertools"
version = "0.14.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b192c782037fadd9cfa75548310488aabdbf3d2da73885b31bd0abd03351285"
dependencies = [
"either",
]
[[package]]
name = "itoa"
version = "1.0.15"
@ -533,7 +524,6 @@ dependencies = [
"glob",
"hashbrown",
"hex",
"itertools 0.14.0",
"num",
"num-complex",
"proptest",

View file

@ -83,7 +83,6 @@ assert_matches = { version = "1.5", default-features = false }
criterion = { version = "0.5", features = ["html_reports"] }
getrandom = { version = "0.3", default-features = false }
hex = { version = "0.4", default-features = false, features = ["alloc"] }
itertools = { version = "0.14" }
proptest = { version = "1.6", default-features = false, features = ["alloc"]}
rand_chacha = { version = "0.9", default-features = false }
rand-utils = { version = "0.12", package = "winter-rand-utils" }

View file

@ -70,18 +70,6 @@ pub struct PartialMmr {
pub(crate) track_latest: bool,
}
impl Default for PartialMmr {
/// Creates a new [PartialMmr] with default values.
fn default() -> Self {
let forest = 0;
let peaks = Vec::new();
let nodes = BTreeMap::new();
let track_latest = false;
Self { forest, peaks, nodes, track_latest }
}
}
impl PartialMmr {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------

View file

@ -34,13 +34,6 @@ pub struct MmrPeaks {
peaks: Vec<RpoDigest>,
}
impl Default for MmrPeaks {
/// Returns new [`MmrPeaks`] instantiated from an empty vector of peaks and 0 leaves.
fn default() -> Self {
Self { num_leaves: 0, peaks: Vec::new() }
}
}
impl MmrPeaks {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------

View file

@ -12,23 +12,6 @@ use crate::{
merkle::{InOrderIndex, MerklePath, MerkleTree, MmrProof, NodeIndex, int_to_node},
};
#[test]
fn tests_empty_mmr_peaks() {
let peaks = MmrPeaks::default();
assert_eq!(peaks.num_peaks(), 0);
assert_eq!(peaks.num_leaves(), 0);
}
#[test]
fn test_empty_partial_mmr() {
let mmr = PartialMmr::default();
assert_eq!(mmr.num_leaves(), 0);
assert_eq!(mmr.forest(), 0);
assert_eq!(mmr.peaks(), MmrPeaks::default());
assert!(mmr.nodes.is_empty());
assert!(!mmr.track_latest);
}
#[test]
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
let empty_forest = 0;

View file

@ -29,7 +29,7 @@ impl MerklePath {
/// Creates a new Merkle path from a list of nodes.
///
/// The list must be in order of deepest to shallowest.
/// The list is assumed to be in order of deepest to shallowest.
pub fn new(nodes: Vec<RpoDigest>) -> Self {
assert!(nodes.len() <= u8::MAX.into(), "MerklePath may have at most 256 items");
Self { nodes }
@ -43,9 +43,19 @@ impl MerklePath {
/// The `depth` parameter is defined in terms of `self.depth()`. Merkle paths conventionally do
/// not include the root, so the shallowest depth is `1`, and the deepest depth is
/// `self.depth()`.
pub fn at_depth(&self, depth: NonZero<u8>) -> Option<RpoDigest> {
pub fn at_depth(&self, depth: NonZero<u8>) -> Option<&RpoDigest> {
let index = u8::checked_sub(self.depth(), depth.get())?;
self.nodes.get(index as usize).copied()
self.nodes.get(index as usize)
}
/// Returns a reference to the path node at the specified index, or [None] if the index is out
/// of bounds.
///
/// The node at index 0 is the deepest part of the path.
///
/// This is a checked version of using the indexing operator `[]`.
pub fn at_idx(&self, index: usize) -> Option<&RpoDigest> {
self.nodes.get(index)
}
/// Returns the depth in which this Merkle path proof is valid.

View file

@ -84,14 +84,14 @@ pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
/// Mostly this is an implementation detail of [`Self::open()`].
fn get_path(&self, key: &Self::Key) -> MerklePath {
let index = NodeIndex::from(Self::key_to_leaf_index(key));
index.proof_indices().map(|index| self.get_node_hash(index)).collect()
index.proof_indices().map(|index| self.get_hash(index)).collect()
}
/// Get the hash of a node at an arbitrary index, including the root or leaf hashes.
///
/// The root index simply returns [`Self::root()`]. Other hashes are retrieved by calling
/// [`Self::get_inner_node()`] on the parent, and returning the respective child hash.
fn get_node_hash(&self, index: NodeIndex) -> RpoDigest {
fn get_hash(&self, index: NodeIndex) -> RpoDigest {
if index.is_root() {
return self.root();
}

View file

@ -1,11 +1,12 @@
use alloc::collections::BTreeSet;
use crate::merkle::{SparseMerklePath, SparseValuePath};
use super::{
super::ValuePath, EMPTY_WORD, EmptySubtreeRoots, InnerNode, InnerNodeInfo, InnerNodes,
LeafIndex, MerkleError, MerklePath, MutationSet, NodeIndex, RpoDigest, SMT_MAX_DEPTH,
SMT_MIN_DEPTH, SparseMerkleTree, Word,
};
use crate::merkle::{SparseMerklePath, SparseValuePath};
#[cfg(test)]
mod tests;
@ -172,7 +173,7 @@ impl<const DEPTH: u8> SimpleSmt<DEPTH> {
/// path to the leaf, as well as the leaf itself.
pub fn open(&self, key: &LeafIndex<DEPTH>) -> SparseValuePath {
let value = RpoDigest::new(self.get_value(key));
let nodes = key.index.proof_indices().map(|index| self.get_node_hash(index));
let nodes = key.index.proof_indices().map(|index| self.get_hash(index));
// `from_sized_iter()` returns an error if there are more nodes than `SMT_MAX_DEPTH`, but
// this could only happen if we have more levels than `SMT_MAX_DEPTH` ourselves, which is
// guarded against in `SimpleSmt::new()`.

View file

@ -1,4 +1,4 @@
use alloc::{borrow::Cow, vec::Vec};
use alloc::vec::Vec;
use core::{
iter::{self, FusedIterator},
num::NonZero,
@ -14,10 +14,10 @@ use super::{
/// with empty nodes.
///
/// Empty nodes in the path are stored only as their position, represented with a bitmask. A
/// maximum of 64 nodes (`SMT_MAX_DEPTH`) can be stored (empty and non-empty). The more nodes in a
/// path are empty, the less memory this struct will use. This type calculates empty nodes on-demand
/// when iterated through, converted to a [MerklePath], or an empty node is retrieved with
/// [`SparseMerklePath::at_depth()`], which will incur overhead.
/// maximum of 64 nodes in the path can be empty. The more nodes in a path are empty, the less
/// memory this struct will use. This type calculates empty nodes on-demand when iterated through,
/// converted to a [MerklePath], or an empty node is retrieved with [`SparseMerklePath::at_idx()`]
/// or [`SparseMerklePath::at_depth()`], which will incur overhead.
///
/// NOTE: This type assumes that Merkle paths always span from the root of the tree to a leaf.
/// Partial paths are not supported.
@ -25,8 +25,6 @@ use super::{
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SparseMerklePath {
/// A bitmask representing empty nodes. The set bit corresponds to the depth of an empty node.
/// The least significant bit (bit 0) describes depth 1 node (root's children).
/// The `bit index + 1` is equal to node's depth.
empty_nodes_mask: u64,
/// The non-empty nodes, stored in depth-order, but not contiguous across depth.
nodes: Vec<RpoDigest>,
@ -38,7 +36,8 @@ impl SparseMerklePath {
/// of deepest to shallowest.
///
/// Knowing the size is necessary to calculate the depth of the tree, which is needed to detect
/// which nodes are empty nodes.
/// which nodes are empty nodes. If you know the size but your iterator type is not
/// [ExactSizeIterator], use [`SparseMerklePath::from_iter_with_depth()`].
///
/// # Errors
/// Returns [MerkleError::DepthTooBig] if `tree_depth` is greater than [SMT_MAX_DEPTH].
@ -47,27 +46,38 @@ impl SparseMerklePath {
I: IntoIterator<IntoIter: ExactSizeIterator, Item = RpoDigest>,
{
let iterator = iterator.into_iter();
let tree_depth = iterator.len() as u8;
// `iterator.len() as u8` will truncate, but not below `SMT_MAX_DEPTH`, which
// `from_iter_with_depth` checks for.
Self::from_iter_with_depth(iterator.len() as u8, iterator)
}
/// Constructs a sparse Merkle path from a manually specified tree depth, and an iterator over
/// Merkle nodes from deepest to shallowest.
///
/// Knowing the size is necessary to calculate the depth of the tree, which is needed to detect
/// which nodes are empty nodes.
///
/// # Errors
/// Returns [MerkleError::DepthTooBig] if `tree_depth` is greater than [SMT_MAX_DEPTH].
pub fn from_iter_with_depth(
tree_depth: u8,
iter: impl IntoIterator<Item = RpoDigest>,
) -> Result<Self, MerkleError> {
if tree_depth > SMT_MAX_DEPTH {
return Err(MerkleError::DepthTooBig(tree_depth as u64));
}
let mut empty_nodes_mask: u64 = 0;
let mut nodes: Vec<RpoDigest> = Default::default();
for (depth, node) in iter::zip(path_depth_iter(tree_depth), iterator) {
let path: Self = iter::zip(path_depth_iter(tree_depth), iter)
.map(|(depth, node)| {
let &equivalent_empty_node = EmptySubtreeRoots::entry(tree_depth, depth.get());
let is_empty = node == equivalent_empty_node;
let node = if is_empty { None } else { Some(node) };
match node {
Some(node) => nodes.push(node),
None => empty_nodes_mask |= Self::bitmask_for_depth(depth),
}
}
(depth, node)
})
.collect();
Ok(SparseMerklePath { nodes, empty_nodes_mask })
Ok(path)
}
/// Returns the total depth of this path, i.e., the number of nodes this path represents.
@ -85,24 +95,63 @@ impl SparseMerklePath {
/// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this
/// path.
pub fn at_depth(&self, node_depth: NonZero<u8>) -> Result<RpoDigest, MerkleError> {
let node = self
.at_depth_nonempty(node_depth)?
.unwrap_or_else(|| *EmptySubtreeRoots::entry(self.depth(), node_depth.get()));
Ok(node)
}
/// Get a specific non-empty node in this path at a given depth, or `None` if the specified
/// node is an empty node.
///
/// # Errors
/// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this
/// path.
pub fn at_depth_nonempty(
&self,
node_depth: NonZero<u8>,
) -> Result<Option<RpoDigest>, MerkleError> {
if node_depth.get() > self.depth() {
return Err(MerkleError::DepthTooBig(node_depth.get().into()));
}
let node = if let Some(nonempty_index) = self.get_nonempty_index(node_depth) {
self.nodes[nonempty_index]
} else {
*EmptySubtreeRoots::entry(self.depth(), node_depth.get())
};
if self.is_depth_empty(node_depth) {
return Ok(None);
}
Ok(node)
// Our index needs to account for all the empty nodes that aren't in `self.nodes`.
let nonempty_index = self.get_nonempty_index(node_depth);
Ok(Some(self.nodes[nonempty_index]))
}
/// Returns the path node at the specified index, or [None] if the index is out of bounds.
///
/// The node at index 0 is the deepest part of the path.
///
/// ```
/// # use core::num::NonZero;
/// # use miden_crypto::{ZERO, ONE, hash::rpo::RpoDigest, merkle::SparseMerklePath};
/// # let zero = RpoDigest::new([ZERO; 4]);
/// # let one = RpoDigest::new([ONE; 4]);
/// # let sparse_path = SparseMerklePath::from_sized_iter(vec![zero, one, one, zero]).unwrap();
/// let depth = NonZero::new(sparse_path.depth()).unwrap();
/// assert_eq!(
/// sparse_path.at_idx(0).unwrap(),
/// sparse_path.at_depth(depth).unwrap(),
/// );
/// ```
pub fn at_idx(&self, index: usize) -> Option<RpoDigest> {
// If this overflows *or* if the depth is zero then the index was out of bounds.
let depth = NonZero::new(u8::checked_sub(self.depth(), index as u8)?)?;
self.at_depth(depth).ok()
}
// PROVIDERS
// ============================================================================================
/// Constructs a borrowing iterator over the nodes in this path.
/// Starts from the leaf and iterates toward the root (excluding the root).
pub fn iter(&self) -> impl ExactSizeIterator<Item = RpoDigest> {
self.into_iter()
}
@ -119,20 +168,14 @@ impl SparseMerklePath {
(self.empty_nodes_mask & Self::bitmask_for_depth(node_depth)) != 0
}
/// Index of the non-empty node in the `self.nodes` vector. If the specified depth is
/// empty, None is returned.
fn get_nonempty_index(&self, node_depth: NonZero<u8>) -> Option<usize> {
if self.is_depth_empty(node_depth) {
return None;
}
fn get_nonempty_index(&self, node_depth: NonZero<u8>) -> usize {
let bit_index = node_depth.get() - 1;
let without_shallower = self.empty_nodes_mask >> bit_index;
let empty_deeper = without_shallower.count_ones() as usize;
// The vec index we would use if we didn't have any empty nodes to account for...
let normal_index = (self.depth() - node_depth.get()) as usize;
// subtracted by the number of empty nodes that are deeper than us.
Some(normal_index - empty_deeper)
normal_index - empty_deeper
}
}
@ -152,21 +195,8 @@ impl Deserializable for SparseMerklePath {
source: &mut R,
) -> Result<Self, DeserializationError> {
let depth = source.read_u8()?;
if depth > SMT_MAX_DEPTH {
return Err(DeserializationError::InvalidValue(format!(
"SparseMerklePath max depth exceeded ({} > {})",
depth, SMT_MAX_DEPTH
)));
}
let empty_nodes_mask = source.read_u64()?;
let empty_nodes_count = empty_nodes_mask.count_ones();
if empty_nodes_count > depth as u32 {
return Err(DeserializationError::InvalidValue(format!(
"SparseMerklePath has more empty nodes ({}) than its full length ({})",
empty_nodes_count, depth
)));
}
let count = depth as u32 - empty_nodes_count;
let count = depth as u32 - empty_nodes_mask.count_ones();
let nodes = source.read_many::<RpoDigest>(count as usize)?;
Ok(Self { empty_nodes_mask, nodes })
}
@ -181,13 +211,13 @@ impl From<SparseMerklePath> for MerklePath {
}
}
impl TryFrom<MerklePath> for SparseMerklePath {
type Error = MerkleError;
/// # Errors
///
/// This conversion returns [MerkleError::DepthTooBig] if the path length is greater than
/// [`SMT_MAX_DEPTH`].
impl TryFrom<MerklePath> for SparseMerklePath {
type Error = MerkleError;
fn try_from(path: MerklePath) -> Result<Self, MerkleError> {
SparseMerklePath::from_sized_iter(path)
}
@ -202,11 +232,41 @@ impl From<SparseMerklePath> for Vec<RpoDigest> {
// ITERATORS
// ================================================================================================
/// Iterator for [`SparseMerklePath`]. Starts from the leaf and iterates toward the root (excluding
/// the root).
/// Contructs a [SparseMerklePath] out of an iterator of optional nodes, where `None` indicates an
/// empty node.
impl FromIterator<(NonZero<u8>, Option<RpoDigest>)> for SparseMerklePath {
fn from_iter<I>(iter: I) -> SparseMerklePath
where
I: IntoIterator<Item = (NonZero<u8>, Option<RpoDigest>)>,
{
let mut empty_nodes_mask: u64 = 0;
let mut nodes: Vec<RpoDigest> = Default::default();
for (depth, node) in iter {
match node {
Some(node) => nodes.push(node),
None => empty_nodes_mask |= Self::bitmask_for_depth(depth),
}
}
SparseMerklePath { nodes, empty_nodes_mask }
}
}
impl<'p> IntoIterator for &'p SparseMerklePath {
type Item = <SparseMerklePathIter<'p> as Iterator>::Item;
type IntoIter = SparseMerklePathIter<'p>;
fn into_iter(self) -> SparseMerklePathIter<'p> {
let tree_depth = self.depth();
SparseMerklePathIter { path: self, next_depth: tree_depth }
}
}
/// Borrowing iterator for [`SparseMerklePath`].
pub struct SparseMerklePathIter<'p> {
/// The "inner" value we're iterating over.
path: Cow<'p, SparseMerklePath>,
path: &'p SparseMerklePath,
/// The depth a `next()` call will get. `next_depth == 0` indicates that the iterator has been
/// exhausted.
@ -223,10 +283,7 @@ impl Iterator for SparseMerklePathIter<'_> {
self.next_depth = this_depth.get() - 1;
// `this_depth` is only ever decreasing, so it can't ever exceed `self.path.depth()`.
let node = self
.path
.at_depth(this_depth)
.expect("current depth should never exceed the path depth");
let node = self.path.at_depth(this_depth).unwrap();
Some(node)
}
@ -247,31 +304,56 @@ impl FusedIterator for SparseMerklePathIter<'_> {}
// TODO: impl DoubleEndedIterator.
/// Owning iterator for [SparseMerklePath].
pub struct IntoIter {
/// The "inner" value we're iterating over.
path: SparseMerklePath,
/// The depth a `next()` call will get. `next_depth == 0` indicates that the iterator has been
/// exhausted.
next_depth: u8,
}
impl IntoIterator for SparseMerklePath {
type IntoIter = SparseMerklePathIter<'static>;
type IntoIter = IntoIter;
type Item = <Self::IntoIter as Iterator>::Item;
fn into_iter(self) -> SparseMerklePathIter<'static> {
fn into_iter(self) -> IntoIter {
let tree_depth = self.depth();
SparseMerklePathIter {
path: Cow::Owned(self),
next_depth: tree_depth,
}
IntoIter { path: self, next_depth: tree_depth }
}
}
impl<'p> IntoIterator for &'p SparseMerklePath {
type Item = <SparseMerklePathIter<'p> as Iterator>::Item;
type IntoIter = SparseMerklePathIter<'p>;
impl Iterator for IntoIter {
type Item = RpoDigest;
fn into_iter(self) -> SparseMerklePathIter<'p> {
let tree_depth = self.depth();
SparseMerklePathIter {
path: Cow::Borrowed(self),
next_depth: tree_depth,
fn next(&mut self) -> Option<RpoDigest> {
let this_depth = self.next_depth;
// Paths don't include the root, so if `this_depth` is 0 then we keep returning `None`.
let this_depth = NonZero::new(this_depth)?;
self.next_depth = this_depth.get() - 1;
// `this_depth` is only ever decreasing, so it can't ever exceed `self.path.depth()`.
let node = self.path.at_depth(this_depth).unwrap();
Some(node)
}
// IntoIter always knows its exact size.
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = ExactSizeIterator::len(self);
(remaining, Some(remaining))
}
}
impl ExactSizeIterator for IntoIter {
fn len(&self) -> usize {
self.next_depth as usize
}
}
impl FusedIterator for IntoIter {}
// TODO: impl DoubleEndedIterator.
// COMPARISONS
// ================================================================================================
@ -324,13 +406,13 @@ impl From<(SparseMerklePath, Word)> for SparseValuePath {
}
}
impl TryFrom<ValuePath> for SparseValuePath {
type Error = MerkleError;
/// # Errors
///
/// This conversion returns [MerkleError::DepthTooBig] if the path length is greater than
/// [`SMT_MAX_DEPTH`].
impl TryFrom<ValuePath> for SparseValuePath {
type Error = MerkleError;
fn try_from(other: ValuePath) -> Result<Self, MerkleError> {
let ValuePath { value, path } = other;
let path = SparseMerklePath::try_from(path)?;
@ -374,12 +456,10 @@ fn path_depth_iter(tree_depth: u8) -> impl ExactSizeIterator<Item = NonZero<u8>>
top_down_iter.rev()
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use alloc::vec::Vec;
use core::num::NonZero;
use core::{iter, num::NonZero};
use assert_matches::assert_matches;
@ -477,34 +557,145 @@ mod tests {
assert_eq!(sparse_path.empty_nodes_mask, EMPTY_BITS);
// Keep track of how many non-empty nodes we have seen
let mut nonempty_idx = 0;
// Depth 8.
{
let depth: u8 = 8;
// Test starting from the deepest nodes (depth 8)
for depth in (1..=8).rev() {
// Check that the way we calculate these indices is correct.
let idx = (sparse_path.depth() - depth) as usize;
let bit = 1 << (depth - 1);
assert_eq!(idx, 0);
// Check that the depth bit is set correctly...
// Check that the way we calculate these bitmasks is correct.
let bit = 0b1000_0000;
assert_eq!(bit, 1 << (depth - 1));
// Check that the depth-8 bit is not set...
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert!(!is_set);
// ...which should match the status of the `sparse_nodes` element being `None`.
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
if is_set {
// Check that we don't return digests for empty nodes
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
} else {
// Check that we can calculate non-empty indices correctly.
// And finally, check that we can calculate non-empty indices correctly.
let control_node = raw_nodes.get(idx).unwrap();
assert_eq!(
sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()).unwrap(),
nonempty_idx
);
let nonempty_idx: usize = 0;
assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx);
let test_node = sparse_path.nodes.get(nonempty_idx).unwrap();
assert_eq!(test_node, control_node);
nonempty_idx += 1;
}
// Rinse and repeat for each remaining depth.
// Depth 7.
{
let depth: u8 = 7;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 1);
let bit = 0b0100_0000;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert!(is_set);
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
}
// Depth 6.
{
let depth: u8 = 6;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 2);
let bit = 0b0010_0000;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
assert!(is_set);
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
}
// Depth 5.
{
let depth: u8 = 5;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 3);
let bit = 0b0001_0000;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
assert!(!is_set);
let control_node = raw_nodes.get(idx).unwrap();
let nonempty_idx: usize = 1;
assert_eq!(sparse_path.nodes.get(nonempty_idx).unwrap(), control_node);
assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx,);
let test_node = sparse_path.nodes.get(nonempty_idx).unwrap();
assert_eq!(test_node, control_node);
}
// Depth 4.
{
let depth: u8 = 4;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 4);
let bit = 0b0000_1000;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
assert!(!is_set);
let control_node = raw_nodes.get(idx).unwrap();
let nonempty_idx: usize = 2;
assert_eq!(sparse_path.nodes.get(nonempty_idx).unwrap(), control_node);
assert_eq!(sparse_path.get_nonempty_index(NonZero::new(depth).unwrap()), nonempty_idx,);
let test_node = sparse_path.nodes.get(nonempty_idx).unwrap();
assert_eq!(test_node, control_node);
}
// Depth 3.
{
let depth: u8 = 3;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 5);
let bit = 0b0000_0100;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert!(is_set);
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
}
// Depth 2.
{
let depth: u8 = 2;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 6);
let bit = 0b0000_0010;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert!(is_set);
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
}
// Depth 1.
{
let depth: u8 = 1;
let idx = (sparse_path.depth() - depth) as usize;
assert_eq!(idx, 7);
let bit = 0b0000_0001;
assert_eq!(bit, 1 << (depth - 1));
let is_set = (sparse_path.empty_nodes_mask & bit) != 0;
assert!(is_set);
assert_eq!(is_set, sparse_nodes.get(idx).unwrap().is_none());
let &test_node = sparse_nodes.get(idx).unwrap();
assert_eq!(test_node, None);
}
}
@ -516,25 +707,21 @@ mod tests {
let index = NodeIndex::from(Smt::key_to_leaf_index(key));
let control_path = tree.get_path(key);
for (&control_node, proof_index) in
itertools::zip_eq(&*control_path, index.proof_indices())
{
let proof_node = tree.get_node_hash(proof_index);
assert_eq!(control_node, proof_node);
for (&control_node, proof_index) in iter::zip(&*control_path, index.proof_indices()) {
let proof_node = tree.get_hash(proof_index);
assert_eq!(control_node, proof_node, "WHat");
}
let sparse_path =
SparseMerklePath::from_sized_iter(control_path.clone().into_iter()).unwrap();
for (sparse_node, proof_idx) in
itertools::zip_eq(sparse_path.clone(), index.proof_indices())
{
let proof_node = tree.get_node_hash(proof_idx);
assert_eq!(sparse_node, proof_node);
for (sparse_node, proof_idx) in iter::zip(sparse_path.clone(), index.proof_indices()) {
let proof_node = tree.get_hash(proof_idx);
assert_eq!(sparse_node, proof_node, "WHat");
}
assert_eq!(control_path.depth(), sparse_path.depth());
for (control, sparse) in itertools::zip_eq(control_path, sparse_path) {
assert_eq!(control, sparse);
for (i, (control, sparse)) in iter::zip(control_path, sparse_path).enumerate() {
assert_eq!(control, sparse, "on iteration {i}");
}
}
}
@ -551,15 +738,24 @@ mod tests {
// Test random access by depth.
for depth in path_depth_iter(control_path.depth()) {
let control_node = control_path.at_depth(depth).unwrap();
let &control_node = control_path.at_depth(depth).unwrap();
let sparse_node = sparse_path.at_depth(depth).unwrap();
assert_eq!(control_node, sparse_node, "at depth {depth} for entry {i}");
}
// Test random access by index.
// Letting index get to `control_path.len()` will test that both sides correctly return
// `None` for out of bounds access.
for index in 0..=(control_path.len()) {
let control_node = control_path.at_idx(index).copied();
let sparse_node = sparse_path.at_idx(index);
assert_eq!(control_node, sparse_node);
}
}
}
#[test]
fn test_borrowing_iterator() {
fn test_owning_iterator() {
let tree = make_smt(8192);
for (key, _value) in tree.entries() {
@ -570,9 +766,7 @@ mod tests {
// Test that both iterators yield the same amount of the same values.
let mut count: u64 = 0;
for (&control_node, sparse_node) in
itertools::zip_eq(control_path.iter(), sparse_path.iter())
{
for (&control_node, sparse_node) in iter::zip(control_path.iter(), sparse_path.iter()) {
count += 1;
assert_eq!(control_node, sparse_node);
}
@ -581,7 +775,7 @@ mod tests {
}
#[test]
fn test_owning_iterator() {
fn test_borrowing_iterator() {
let tree = make_smt(8192);
for (key, _value) in tree.entries() {
@ -593,7 +787,7 @@ mod tests {
// Test that both iterators yield the same amount of the same values.
let mut count: u64 = 0;
for (control_node, sparse_node) in itertools::zip_eq(control_path, sparse_path) {
for (control_node, sparse_node) in iter::zip(control_path, sparse_path) {
count += 1;
assert_eq!(control_node, sparse_node);
}
@ -612,6 +806,7 @@ mod tests {
sparse_path.at_depth(NonZero::new(1).unwrap()),
Err(MerkleError::DepthTooBig(1))
);
assert_eq!(sparse_path.at_idx(0), None);
assert_eq!(sparse_path.iter().next(), None);
assert_eq!(sparse_path.into_iter().next(), None);
}