use core::f64::consts::LN_2; #[cfg(not(feature = "std"))] use num::Float; use rand::Rng; /// Samples an integer from {0, ..., 18} according to the distribution χ, which is close to /// the half-Gaussian distribution on the natural numbers with mean 0 and standard deviation /// equal to sigma_max. fn base_sampler(bytes: [u8; 9]) -> i16 { const RCDT: [u128; 18] = [ 3024686241123004913666, 1564742784480091954050, 636254429462080897535, 199560484645026482916, 47667343854657281903, 8595902006365044063, 1163297957344668388, 117656387352093658, 8867391802663976, 496969357462633, 20680885154299, 638331848991, 14602316184, 247426747, 3104126, 28824, 198, 1, ]; let u = u128::from_be_bytes([vec![0u8; 7], bytes.to_vec()].concat().try_into().unwrap()); RCDT.into_iter().filter(|r| u < *r).count() as i16 } /// Computes an integer approximation of 2^63 * ccs * exp(-x). fn approx_exp(x: f64, ccs: f64) -> u64 { // The constants C are used to approximate exp(-x); these // constants are taken from FACCT (up to a scaling factor // of 2^63): // https://eprint.iacr.org/2018/1234 // https://github.com/raykzhao/gaussian const C: [u64; 13] = [ 0x00000004741183a3u64, 0x00000036548cfc06u64, 0x0000024fdcbf140au64, 0x0000171d939de045u64, 0x0000d00cf58f6f84u64, 0x000680681cf796e3u64, 0x002d82d8305b0feau64, 0x011111110e066fd0u64, 0x0555555555070f00u64, 0x155555555581ff00u64, 0x400000000002b400u64, 0x7fffffffffff4800u64, 0x8000000000000000u64, ]; let mut z: u64; let mut y: u64; let twoe63 = 1u64 << 63; y = C[0]; z = f64::floor(x * (twoe63 as f64)) as u64; for cu in C.iter().skip(1) { let zy = (z as u128) * (y as u128); y = cu - ((zy >> 63) as u64); } z = f64::floor((twoe63 as f64) * ccs) as u64; (((z as u128) * (y as u128)) >> 63) as u64 } /// A random bool that is true with probability ≈ ccs · exp(-x). fn ber_exp(x: f64, ccs: f64, random_bytes: [u8; 7]) -> bool { // 0.69314718055994530941 = ln(2) let s = f64::floor(x / LN_2) as usize; let r = x - LN_2 * (s as f64); let shamt = usize::min(s, 63); let z = ((((approx_exp(r, ccs) as u128) << 1) - 1) >> shamt) as u64; let mut w = 0i16; for (index, i) in (0..64).step_by(8).rev().enumerate() { let byte = random_bytes[index]; w = (byte as i16) - (((z >> i) & 0xff) as i16); if w != 0 { break; } } w < 0 } /// Samples an integer from the Gaussian distribution with given mean (mu) and standard deviation /// (sigma). pub(crate) fn sampler_z(mu: f64, sigma: f64, sigma_min: f64, rng: &mut R) -> i16 { const SIGMA_MAX: f64 = 1.8205; const INV_2SIGMA_MAX_SQ: f64 = 1f64 / (2f64 * SIGMA_MAX * SIGMA_MAX); let isigma = 1f64 / sigma; let dss = 0.5f64 * isigma * isigma; let s = f64::floor(mu); let r = mu - s; let ccs = sigma_min * isigma; loop { let z0 = base_sampler(rng.gen()); let random_byte: u8 = rng.gen(); let b = (random_byte & 1) as i16; let z = b + ((b << 1) - 1) * z0; let zf_min_r = (z as f64) - r; // x = ((z-r)^2)/(2*sigma^2) - ((z-b)^2)/(2*sigma0^2) let x = zf_min_r * zf_min_r * dss - (z0 * z0) as f64 * INV_2SIGMA_MAX_SQ; if ber_exp(x, ccs, rng.gen()) { return z + (s as i16); } } } #[cfg(all(test, feature = "std"))] mod test { use alloc::vec::Vec; use std::{thread::sleep, time::Duration}; use rand::RngCore; use super::{approx_exp, ber_exp, sampler_z}; /// RNG used only for testing purposes, whereby the produced /// string of random bytes is equal to the one it is initialized /// with. Whatever you do, do not use this RNG in production. struct UnsafeBufferRng { buffer: Vec, index: usize, } impl UnsafeBufferRng { fn new(buffer: &[u8]) -> Self { Self { buffer: buffer.to_vec(), index: 0 } } fn next(&mut self) -> u8 { if self.buffer.len() <= self.index { // panic!("Ran out of buffer."); sleep(Duration::from_millis(10)); 0u8 } else { let return_value = self.buffer[self.index]; self.index += 1; return_value } } } impl RngCore for UnsafeBufferRng { fn next_u32(&mut self) -> u32 { // let bytes: [u8; 4] = (0..4) // .map(|_| self.next()) // .collect_vec() // .try_into() // .unwrap(); // u32::from_be_bytes(bytes) u32::from_le_bytes([self.next(), 0, 0, 0]) } fn next_u64(&mut self) -> u64 { // let bytes: [u8; 8] = (0..8) // .map(|_| self.next()) // .collect_vec() // .try_into() // .unwrap(); // u64::from_be_bytes(bytes) u64::from_le_bytes([self.next(), 0, 0, 0, 0, 0, 0, 0]) } fn fill_bytes(&mut self, dest: &mut [u8]) { for d in dest.iter_mut() { *d = self.next(); } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> { for d in dest.iter_mut() { *d = self.next(); } Ok(()) } } #[test] fn test_unsafe_buffer_rng() { let seed_bytes = hex::decode("7FFECD162AE2").unwrap(); let mut rng = UnsafeBufferRng::new(&seed_bytes); let generated_bytes: Vec = (0..seed_bytes.len()).map(|_| rng.next()).collect(); assert_eq!(seed_bytes, generated_bytes); } #[test] fn test_approx_exp() { let precision = 1u64 << 14; // known answers were generated with the following sage script: //```sage // num_samples = 10 // precision = 200 // R = Reals(precision) // // print(f"let kats : [(f64, f64, u64);{num_samples}] = [") // for i in range(num_samples): // x = RDF.random_element(0.0, 0.693147180559945) // ccs = RDF.random_element(0.0, 1.0) // res = round(2^63 * R(ccs) * exp(R(-x))) // print(f"({x}, {ccs}, {res}),") // print("];") // ``` let kats: [(f64, f64, u64); 10] = [ (0.2314993926072656, 0.8148006314615972, 5962140072160879737), (0.2648875572812225, 0.12769669655309035, 903712282351034505), (0.11251957513682391, 0.9264611470305881, 7635725498677341553), (0.04353439307256617, 0.5306497137523327, 4685877322232397936), (0.41834495299784347, 0.879438856118578, 5338392138535350986), (0.32579398973228557, 0.16513412873289002, 1099603299296456803), (0.5939508073919817, 0.029776019144967303, 151637565622779016), (0.2932367999399056, 0.37123847662857923, 2553827649386670452), (0.5005699297417507, 0.31447208863888976, 1758235618083658825), (0.4876437338498085, 0.6159515298936868, 3488632981903743976), ]; for (x, ccs, answer) in kats { let difference = (answer as i128) - (approx_exp(x, ccs) as i128); assert!( (difference * difference) as u64 <= precision * precision, "answer: {answer} versus approximation: {}\ndifference: {} whereas precision: {}", approx_exp(x, ccs), difference, precision ); } } #[test] fn test_ber_exp() { let kats = [ ( 1.268_314_048_020_498_4, 0.749_990_853_267_664_9, hex::decode("ea000000000000").unwrap(), false, ), ( 0.001_563_917_959_143_409_6, 0.749_990_853_267_664_9, hex::decode("6c000000000000").unwrap(), true, ), ( 0.017_921_215_753_999_235, 0.749_990_853_267_664_9, hex::decode("c2000000000000").unwrap(), false, ), ( 0.776_117_648_844_980_6, 0.751_181_554_542_520_8, hex::decode("58000000000000").unwrap(), true, ), ]; for (x, ccs, bytes, answer) in kats { assert_eq!(answer, ber_exp(x, ccs, bytes.try_into().unwrap())); } } #[test] fn test_sampler_z() { let sigma_min = 1.277833697; // known answers from the doc, table 3.2, page 44 // https://falcon-sign.info/falcon.pdf // The zeros were added to account for dropped bytes. let kats = [ (-91.90471153063714,1.7037990414754918,hex::decode("0fc5442ff043d66e91d1ea000000000000cac64ea5450a22941edc6c").unwrap(),-92), (-8.322564895434937,1.7037990414754918,hex::decode("f4da0f8d8444d1a77265c2000000000000ef6f98bbbb4bee7db8d9b3").unwrap(),-8), (-19.096516109216804,1.7035823083824078,hex::decode("db47f6d7fb9b19f25c36d6000000000000b9334d477a8bc0be68145d").unwrap(),-20), (-11.335543982423326, 1.7035823083824078, hex::decode("ae41b4f5209665c74d00dc000000000000c1a8168a7bb516b3190cb42c1ded26cd52000000000000aed770eca7dd334e0547bcc3c163ce0b").unwrap(), -12), (7.9386734193997555, 1.6984647769450156, hex::decode("31054166c1012780c603ae0000000000009b833cec73f2f41ca5807c000000000000c89c92158834632f9b1555").unwrap(), 8), (-28.990850086867255, 1.6984647769450156, hex::decode("737e9d68a50a06dbbc6477").unwrap(), -30), (-9.071257914091655, 1.6980782114808988, hex::decode("a98ddd14bf0bf22061d632").unwrap(), -10), (-43.88754568839566, 1.6980782114808988, hex::decode("3cbf6818a68f7ab9991514").unwrap(), -41), (-58.17435547946095,1.7010983419195522,hex::decode("6f8633f5bfa5d26848668e0000000000003d5ddd46958e97630410587c").unwrap(),-61), (-43.58664906684732, 1.7010983419195522, hex::decode("272bc6c25f5c5ee53f83c40000000000003a361fbc7cc91dc783e20a").unwrap(), -46), (-34.70565203313315, 1.7009387219711465, hex::decode("45443c59574c2c3b07e2e1000000000000d9071e6d133dbe32754b0a").unwrap(), -34), (-44.36009577368896, 1.7009387219711465, hex::decode("6ac116ed60c258e2cbaeab000000000000728c4823e6da36e18d08da0000000000005d0cc104e21cc7fd1f5ca8000000000000d9dbb675266c928448059e").unwrap(), -44), (-21.783037079346236, 1.6958406126012802, hex::decode("68163bc1e2cbf3e18e7426").unwrap(), -23), (-39.68827784633828, 1.6958406126012802, hex::decode("d6a1b51d76222a705a0259").unwrap(), -40), (-18.488607061056847, 1.6955259305261838, hex::decode("f0523bfaa8a394bf4ea5c10000000000000f842366fde286d6a30803").unwrap(), -22), (-48.39610939101591, 1.6955259305261838, hex::decode("87bd87e63374cee62127fc0000000000006931104aab64f136a0485b").unwrap(), -50), ]; for (mu, sigma, random_bytes, answer) in kats { assert_eq!( sampler_z(mu, sigma, sigma_min, &mut UnsafeBufferRng::new(&random_bytes)), answer ); } } }