miden-crypto/src/merkle/smt/full/tests.rs
Qyriad 0f67239bd3 feat: impl hashing Merkle leaves that don't yet exist
This commit implements 'prospective leaf hashing' -- computing what the
hash of a sparse Merkle tree leaf *would* be for a key-value insertion
without actually performing that insertion.

For SimpleSmt, this is trivial, since the leaf hash and its payload are
the same.

For the full Smt, the new leaf payload (and thus, its hash) depend on
the existing payload in that leaf, making the prospective hash logic a
combination of the normal insertion logic and the normal hash logic. But
because we're only interested in the hash and not the intermediate
value, we can skip allocations and sorts for the payload itself.
2024-08-22 14:16:17 -06:00

495 lines
16 KiB
Rust

use alloc::vec::Vec;
use super::{Felt, LeafIndex, NodeIndex, Rpo256, RpoDigest, Smt, SmtLeaf, EMPTY_WORD, SMT_DEPTH};
use crate::{
merkle::{smt::SparseMerkleTree, EmptySubtreeRoots, MerkleStore},
utils::{Deserializable, Serializable},
Word, ONE, WORD_SIZE,
};
// SMT
// --------------------------------------------------------------------------------------------
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the key is alone in its leaf
#[test]
fn test_smt_insert_at_same_key() {
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
let leaf_node = build_empty_or_single_leaf_node(key_1, value_1);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_empty_or_single_leaf_node(key_1, value_2);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the leaf type is `SmtLeaf::Multiple`
#[test]
fn test_smt_insert_at_same_key_2() {
// The most significant u64 used for both keys (to ensure they map to the same leaf)
let key_msb: u64 = 42;
let key_already_present: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(key_msb)]);
let key_already_present_index: NodeIndex =
LeafIndex::<SMT_DEPTH>::from(key_already_present).into();
let value_already_present = [ONE + ONE + ONE; WORD_SIZE];
let mut smt =
Smt::with_entries(core::iter::once((key_already_present, value_already_present))).unwrap();
let mut store: MerkleStore = {
let mut store = MerkleStore::default();
let leaf_node = build_empty_or_single_leaf_node(key_already_present, value_already_present);
store
.set_node(*EmptySubtreeRoots::entry(SMT_DEPTH, 0), key_already_present_index, leaf_node)
.unwrap();
store
};
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(key_msb)]);
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
assert_eq!(key_1_index, key_already_present_index);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
// Note: key_1 comes first because it is smaller
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_1),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_2),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test ensures that the root of the tree is as expected when we add/remove 3 items at 3
/// different keys. This also tests that the merkle paths produced are as expected.
#[test]
fn test_smt_insert_and_remove_multiple_values() {
fn insert_values_and_assert_path(
smt: &mut Smt,
store: &mut MerkleStore,
key_values: &[(RpoDigest, Word)],
) {
for &(key, value) in key_values {
let key_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key).into();
let leaf_node = build_empty_or_single_leaf_node(key, value);
let tree_root = store.set_node(smt.root(), key_index, leaf_node).unwrap().root;
let _ = smt.insert(key, value);
assert_eq!(smt.root(), tree_root);
let expected_path = store.get_path(tree_root, key_index).unwrap();
assert_eq!(smt.open(&key).into_parts().0, expected_path.path);
}
}
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_2: RpoDigest = {
let raw = 0b_11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_3: RpoDigest = {
let raw = 0b_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
let value_3 = [ONE + ONE + ONE; WORD_SIZE];
// Insert values in the tree
let key_values = [(key_1, value_1), (key_2, value_2), (key_3, value_3)];
insert_values_and_assert_path(&mut smt, &mut store, &key_values);
// Remove values from the tree
let key_empty_values = [(key_1, EMPTY_WORD), (key_2, EMPTY_WORD), (key_3, EMPTY_WORD)];
insert_values_and_assert_path(&mut smt, &mut store, &key_empty_values);
let empty_root = *EmptySubtreeRoots::entry(SMT_DEPTH, 0);
assert_eq!(smt.root(), empty_root);
// an empty tree should have no leaves or inner nodes
assert!(smt.leaves.is_empty());
assert!(smt.inner_nodes.is_empty());
}
/// This tests that inserting the empty value does indeed remove the key-value contained at the
/// leaf. We insert & remove 3 values at the same leaf to ensure that all cases are covered (empty,
/// single, multiple).
#[test]
fn test_smt_removal() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
let key_3: RpoDigest =
RpoDigest::from([3_u32.into(), 3_u32.into(), 3_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u32.into(); WORD_SIZE];
// insert key-value 1
{
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::Single((key_1, value_1)));
}
// insert key-value 2
{
let old_value_2 = smt.insert(key_2, value_2);
assert_eq!(old_value_2, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_2),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// insert key-value 3
{
let old_value_3 = smt.insert(key_3, value_3);
assert_eq!(old_value_3, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2), (key_3, value_3)])
);
}
// remove key 3
{
let old_value_3 = smt.insert(key_3, EMPTY_WORD);
assert_eq!(old_value_3, value_3);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// remove key 2
{
let old_value_2 = smt.insert(key_2, EMPTY_WORD);
assert_eq!(old_value_2, value_2);
assert_eq!(smt.get_leaf(&key_2), SmtLeaf::Single((key_1, value_1)));
}
// remove key 1
{
let old_value_1 = smt.insert(key_1, EMPTY_WORD);
assert_eq!(old_value_1, value_1);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::new_empty(key_1.into()));
}
}
#[test]
fn test_prospective_hash() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
let key_3: RpoDigest =
RpoDigest::from([3_u32.into(), 3_u32.into(), 3_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u32.into(); WORD_SIZE];
// insert key-value 1
{
let prospective = smt.hash_prospective_leaf(&key_1, &value_1);
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_1).hash(), prospective);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::Single((key_1, value_1)));
}
// insert key-value 2
{
let prospective = smt.hash_prospective_leaf(&key_2, &value_2);
let old_value_2 = smt.insert(key_2, value_2);
assert_eq!(old_value_2, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_2).hash(), prospective);
assert_eq!(
smt.get_leaf(&key_2),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// insert key-value 3
{
let prospective_hash = smt.hash_prospective_leaf(&key_3, &value_3);
let old_value_3 = smt.insert(key_3, value_3);
assert_eq!(old_value_3, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_3).hash(), prospective_hash);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2), (key_3, value_3)])
);
}
// remove key 3
{
let old_hash = smt.get_leaf(&key_3).hash();
let old_value_3 = smt.insert(key_3, EMPTY_WORD);
assert_eq!(old_value_3, value_3);
assert_eq!(old_hash, smt.hash_prospective_leaf(&key_3, &old_value_3));
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// remove key 2
{
let old_hash = smt.get_leaf(&key_2).hash();
let old_value_2 = smt.insert(key_2, EMPTY_WORD);
assert_eq!(old_value_2, value_2);
assert_eq!(old_hash, smt.hash_prospective_leaf(&key_2, &old_value_2));
assert_eq!(smt.get_leaf(&key_2), SmtLeaf::Single((key_1, value_1)));
}
// remove key 1
{
let old_hash = smt.get_leaf(&key_1).hash();
let old_value_1 = smt.insert(key_1, EMPTY_WORD);
assert_eq!(old_value_1, value_1);
assert_eq!(old_hash, smt.hash_prospective_leaf(&key_1, &old_value_1));
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::new_empty(key_1.into()));
}
}
/// Tests that 2 key-value pairs stored in the same leaf have the same path
#[test]
fn test_smt_path_to_keys_in_same_leaf_are_equal() {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
assert_eq!(smt.open(&key_1), smt.open(&key_2));
}
/// Tests that an empty leaf hashes to the empty word
#[test]
fn test_empty_leaf_hash() {
let smt = Smt::default();
let leaf = smt.get_leaf(&RpoDigest::default());
assert_eq!(leaf.hash(), EMPTY_WORD.into());
}
/// Tests that `get_value()` works as expected
#[test]
fn test_smt_get_value() {
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, ONE]);
let key_2: RpoDigest = RpoDigest::from([2_u32, 2_u32, 2_u32, 2_u32]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
let returned_value_1 = smt.get_value(&key_1);
let returned_value_2 = smt.get_value(&key_2);
assert_eq!(value_1, returned_value_1);
assert_eq!(value_2, returned_value_2);
// Check that a key with no inserted value returns the empty word
let key_no_value = RpoDigest::from([42_u32, 42_u32, 42_u32, 42_u32]);
assert_eq!(EMPTY_WORD, smt.get_value(&key_no_value));
}
/// Tests that `entries()` works as expected
#[test]
fn test_smt_entries() {
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, ONE]);
let key_2: RpoDigest = RpoDigest::from([2_u32, 2_u32, 2_u32, 2_u32]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
let mut entries = smt.entries();
// Note: for simplicity, we assume the order `(k1,v1), (k2,v2)`. If a new implementation
// switches the order, it is OK to modify the order here as well.
assert_eq!(&(key_1, value_1), entries.next().unwrap());
assert_eq!(&(key_2, value_2), entries.next().unwrap());
assert!(entries.next().is_none());
}
// SMT LEAF
// --------------------------------------------------------------------------------------------
#[test]
fn test_empty_smt_leaf_serialization() {
let empty_leaf = SmtLeaf::new_empty(LeafIndex::new_max_depth(42));
let mut serialized = empty_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(empty_leaf, deserialized);
}
#[test]
fn test_single_smt_leaf_serialization() {
let single_leaf = SmtLeaf::new_single(
RpoDigest::from([10_u32, 11_u32, 12_u32, 13_u32]),
[1_u32.into(), 2_u32.into(), 3_u32.into(), 4_u32.into()],
);
let mut serialized = single_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(single_leaf, deserialized);
}
#[test]
fn test_multiple_smt_leaf_serialization_success() {
let multiple_leaf = SmtLeaf::new_multiple(vec![
(
RpoDigest::from([10_u32, 11_u32, 12_u32, 13_u32]),
[1_u32.into(), 2_u32.into(), 3_u32.into(), 4_u32.into()],
),
(
RpoDigest::from([100_u32, 101_u32, 102_u32, 13_u32]),
[11_u32.into(), 12_u32.into(), 13_u32.into(), 14_u32.into()],
),
])
.unwrap();
let mut serialized = multiple_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(multiple_leaf, deserialized);
}
// HELPERS
// --------------------------------------------------------------------------------------------
fn build_empty_or_single_leaf_node(key: RpoDigest, value: Word) -> RpoDigest {
if value == EMPTY_WORD {
SmtLeaf::new_empty(key.into()).hash()
} else {
SmtLeaf::Single((key, value)).hash()
}
}
fn build_multiple_leaf_node(kv_pairs: &[(RpoDigest, Word)]) -> RpoDigest {
let elements: Vec<Felt> = kv_pairs
.iter()
.flat_map(|(key, value)| {
let key_elements = key.into_iter();
let value_elements = (*value).into_iter();
key_elements.chain(value_elements)
})
.collect();
Rpo256::hash_elements(&elements)
}