miden-crypto/miden-crypto/src/merkle/sparse_path.rs

399 lines
14 KiB
Rust

use alloc::vec::Vec;
use core::iter;
use winter_utils::{Deserializable, DeserializationError, Serializable};
use super::{EmptySubtreeRoots, MerkleError, MerklePath, RpoDigest, SMT_MAX_DEPTH, Word};
/// A different representation of [`MerklePath`] designed for memory efficiency for Merkle paths
/// with empty nodes.
///
/// Empty nodes in the path are stored only as their position, represented with a bitmask. A
/// maximum of 64 nodes in the path can be empty. The number of empty nodes has no effect on memory
/// usage by this struct, but will incur overhead during iteration or conversion to a
/// [`MerklePath`], for each empty node.
///
/// NOTE: This type assumes that Merkle paths always span from the root of the tree to a leaf.
/// Partial paths are not supported.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SparseMerklePath {
/// A bitmask representing empty nodes. The set bit corresponds to the depth of an empty node.
empty_nodes: u64,
/// The non-empty nodes, stored in depth-order, but not contiguous across depth.
nodes: Vec<RpoDigest>,
}
impl SparseMerklePath {
/// Constructs a sparse Merkle path from any iterator which knows its exact size.
///
/// Knowing the size is necessary to calculate the depth of the tree, which is needed to detect
/// which nodes are empty nodes.
pub fn from_sized_iter(iter: impl ExactSizeIterator<Item = RpoDigest>) -> Option<Self> {
let tree_depth: u8 = iter.len() as u8;
if tree_depth > SMT_MAX_DEPTH {
return None;
}
let mut nodes: Vec<RpoDigest> = Default::default();
let mut empty_nodes: u64 = 0;
for (depth, node) in iter::zip(0..tree_depth, iter) {
let &equivalent_empty_node = EmptySubtreeRoots::entry(tree_depth, depth);
if node == equivalent_empty_node {
// FIXME: should we just fallback to the Vec if we're out of bits?
assert!(depth < 64, "SparseMerklePath may have at most 64 empty nodes");
empty_nodes |= u64::checked_shl(1, depth.into()).unwrap();
} else {
nodes.push(node);
}
}
Some(Self { empty_nodes, nodes })
}
/// Converts a Merkle path to a sparse representation.
///
/// Returns `None` if `path` contains more elements than we can represent ([`SMT_MAX_DEPTH`]).
pub fn from_path(path: MerklePath) -> Option<Self> {
// Note that the path does not include the node itself that it is a path to.
// That is to say, the path is not inclusive of its ending.
Self::from_sized_iter(path.into_iter())
}
/// Converts this sparse representation back to a normal [`MerklePath`].
pub fn into_path(mut self) -> MerklePath {
let tree_depth = self.depth();
let mut nodes: Vec<RpoDigest> = Default::default();
let mut sparse_nodes = self.nodes.drain(..);
for depth in 0..tree_depth {
let empty_bit = u64::checked_shl(1, depth.into()).unwrap();
let is_empty = (self.empty_nodes & empty_bit) != 0;
if is_empty {
let &equivalent_empty_node = EmptySubtreeRoots::entry(tree_depth, depth);
nodes.push(equivalent_empty_node);
} else {
nodes.push(sparse_nodes.next().unwrap());
}
}
debug_assert_eq!(sparse_nodes.next(), None);
drop(sparse_nodes);
debug_assert!(self.nodes.is_empty());
MerklePath::from(nodes)
}
/// Creates a [SparseMerklePath] directly from a bitmask representing empty nodes, and a vec
/// containing all non-empty nodes.
pub fn from_raw_parts(empty_nodes: u64, nodes: Vec<RpoDigest>) -> Self {
Self { empty_nodes, nodes }
}
/// Decomposes a [SparseMerklePath] into its raw components: `(empty_nodes, nodes)`.
pub fn into_raw_parts(self) -> (u64, Vec<RpoDigest>) {
let SparseMerklePath { empty_nodes, nodes } = self;
(empty_nodes, nodes)
}
/// Returns the total depth of this path, i.e., the number of nodes this path represents.
pub fn depth(&self) -> u8 {
(self.nodes.len() + self.empty_nodes.count_ones() as usize) as u8
}
/// Get a specific node in this path at a given depth.
///
/// # Errors
/// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this
/// path.
pub fn get(&self, node_depth: u8) -> Result<RpoDigest, MerkleError> {
let node = self
.get_nonempty(node_depth)?
.unwrap_or_else(|| *EmptySubtreeRoots::entry(self.depth(), node_depth));
Ok(node)
}
/// Get a specific non-emptynode in this path at a given depth, or `None` if the specified node
/// is an empty node.
///
/// # Errors
/// Returns [MerkleError::DepthTooBig] if `node_depth` is greater than the total depth of this
/// path.
pub fn get_nonempty(&self, node_depth: u8) -> Result<Option<RpoDigest>, MerkleError> {
if node_depth > self.depth() {
return Err(MerkleError::DepthTooBig(node_depth.into()));
}
let empty_bit = 1u64 << node_depth;
let is_empty = (self.empty_nodes & empty_bit) != 0;
if is_empty {
return Ok(None);
}
// Our index needs to account for all the empty nodes that aren't in `self.nodes`.
let nonempty_index: usize = {
// TODO: this could also be u64::unbounded_shl(1, node_depth + 1).wrapping_sub(1).
// We should check if that has any performance benefits over using 128-bit integers.
let mask: u64 = ((1u128 << (node_depth + 1)) - 1u128).try_into().unwrap();
let empty_before = u64::count_ones(self.empty_nodes & mask);
node_depth as usize - empty_before as usize
};
Ok(Some(self.nodes[nonempty_index]))
}
}
// CONVERSIONS
// ================================================================================================
impl From<SparseMerklePath> for MerklePath {
fn from(sparse_path: SparseMerklePath) -> Self {
sparse_path.into_path()
}
}
/// # Panics
///
/// This conversion fails and panics if the path length is greater than [`SMT_MAX_DEPTH`].
impl From<MerklePath> for SparseMerklePath {
fn from(path: MerklePath) -> Self {
SparseMerklePath::from_path(path).unwrap()
}
}
impl From<SparseMerklePath> for Vec<RpoDigest> {
fn from(path: SparseMerklePath) -> Self {
path.into_path().into()
}
}
// ITERATORS
// ================================================================================================
/// Contructs a [SparseMerklePath] out of an iterator of optional nodes, where `None` indicates an
/// empty node.
impl FromIterator<Option<RpoDigest>> for SparseMerklePath {
fn from_iter<I>(iter: I) -> SparseMerklePath
where
I: IntoIterator<Item = Option<RpoDigest>>,
{
let mut empty_nodes: u64 = 0;
let mut nodes: Vec<RpoDigest> = Default::default();
for (depth, node) in iter.into_iter().enumerate() {
match node {
Some(node) => nodes.push(node),
None => empty_nodes |= 1 << depth,
}
}
SparseMerklePath { nodes, empty_nodes }
}
}
impl IntoIterator for SparseMerklePath {
type Item = <SparseMerkleIter as Iterator>::Item;
type IntoIter = SparseMerkleIter;
fn into_iter(self) -> SparseMerkleIter {
let tree_depth = self.depth();
SparseMerkleIter {
path: self,
next_depth: Some(0),
tree_depth,
}
}
}
/// Owning iterator for [`SparseMerklePath`].
// TODO: add a non-owning iterator too.
pub struct SparseMerkleIter {
/// The "inner" value we're iterating over.
path: SparseMerklePath,
/// The depth a `next()` call will get. It will only be None if someone calls `next_back()` at
/// depth 0, to indicate that all further `next_back()` calls must also return `None`.
next_depth: Option<u8>,
/// "Cached" value of `path.depth()`.
tree_depth: u8,
}
impl Iterator for SparseMerkleIter {
type Item = RpoDigest;
fn next(&mut self) -> Option<RpoDigest> {
// If `next_depth` is None, then someone called `next_back()` at depth 0.
let next_depth = self.next_depth.unwrap_or(0);
if next_depth >= self.tree_depth {
return None;
}
let node = self.path.get(next_depth).unwrap();
self.next_depth = Some(next_depth + 1);
Some(node)
}
// SparseMerkleIter always knows its exact size.
fn size_hint(&self) -> (usize, Option<usize>) {
let next_depth = self.next_depth.unwrap_or(0);
let len: usize = self.path.depth().into();
let remaining = len - next_depth as usize;
(remaining, Some(remaining))
}
}
impl ExactSizeIterator for SparseMerkleIter {
fn len(&self) -> usize {
let next_depth = self.next_depth.unwrap_or(0);
(self.path.depth() - next_depth) as usize
}
}
impl DoubleEndedIterator for SparseMerkleIter {
fn next_back(&mut self) -> Option<RpoDigest> {
// While `next_depth` is None, all calls to `next_back()` also return `None`.
let next_depth = self.next_depth?;
let node = self.path.get(next_depth).unwrap();
self.next_depth = if next_depth == 0 { None } else { Some(next_depth - 1) };
Some(node)
}
}
// SPARSE MERKLE PATH CONTAINERS
// ================================================================================================
/// A container for a [crate::Word] value and its [SparseMerklePath] opening.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct SparseValuePath {
/// The node value opening for `path`.
pub value: RpoDigest,
/// The path from `value` to `root` (exclusive), using an efficient memory representation for
/// empty nodes.
pub path: SparseMerklePath,
}
impl SparseValuePath {
/// Convenience function to construct a [SparseValuePath].
///
/// `value` is the value `path` leads to, in the tree.
pub fn new(value: RpoDigest, path: SparseMerklePath) -> Self {
Self { value, path }
}
}
impl From<(SparseMerklePath, Word)> for SparseValuePath {
fn from((path, value): (SparseMerklePath, Word)) -> Self {
SparseValuePath::new(value.into(), path)
}
}
// SERIALIZATION
// ================================================================================================
impl Serializable for SparseMerklePath {
fn write_into<W: winter_utils::ByteWriter>(&self, target: &mut W) {
target.write_u8(self.depth());
target.write_u64(self.empty_nodes);
target.write_many(&self.nodes);
}
}
impl Deserializable for SparseMerklePath {
fn read_from<R: winter_utils::ByteReader>(
source: &mut R,
) -> Result<Self, DeserializationError> {
let depth = source.read_u8()?;
let empty_nodes = source.read_u64()?;
let count = depth as u32 - empty_nodes.count_ones();
let nodes = source.read_many::<RpoDigest>(count as usize)?;
Ok(Self { empty_nodes, nodes })
}
}
#[cfg(test)]
mod tests {
use alloc::vec::Vec;
use super::SparseMerklePath;
use crate::{
Felt, ONE, Word,
hash::rpo::RpoDigest,
merkle::{SMT_DEPTH, Smt, smt::SparseMerkleTree},
};
fn make_smt(pair_count: u64) -> Smt {
let entries: Vec<(RpoDigest, Word)> = (0..pair_count)
.map(|n| {
let leaf_index = ((n as f64 / pair_count as f64) * 255.0) as u64;
let key = RpoDigest::new([ONE, ONE, Felt::new(n), Felt::new(leaf_index)]);
let value = [ONE, ONE, ONE, ONE];
(key, value)
})
.collect();
Smt::with_entries(entries).unwrap()
}
#[test]
fn roundtrip() {
let tree = make_smt(8192);
for (key, _value) in tree.entries() {
let control_path = tree.get_path(key);
let sparse_path = SparseMerklePath::from_path(control_path.clone()).unwrap();
assert_eq!(control_path.depth(), sparse_path.depth());
assert_eq!(sparse_path.depth(), SMT_DEPTH);
let test_path = sparse_path.into_path();
assert_eq!(control_path, test_path);
}
}
#[test]
fn random_access() {
let tree = make_smt(8192);
for (i, (key, _value)) in tree.entries().enumerate() {
let control_path = tree.get_path(key);
let sparse_path = SparseMerklePath::from_path(control_path.clone()).unwrap();
assert_eq!(control_path.depth(), sparse_path.depth());
assert_eq!(sparse_path.depth(), SMT_DEPTH);
for (depth, control_node) in control_path.iter().enumerate() {
let test_node = sparse_path.get(depth as u8).unwrap();
assert_eq!(*control_node, test_node, "at depth {depth} for entry {i}");
}
}
}
#[test]
fn iterator() {
let tree = make_smt(8192);
for (i, (key, _value)) in tree.entries().enumerate() {
let path = tree.get_path(key);
let sparse_path = SparseMerklePath::from_path(path.clone()).unwrap();
assert_eq!(path.depth(), sparse_path.depth());
assert_eq!(sparse_path.depth(), SMT_DEPTH);
for (depth, iter_node) in sparse_path.clone().into_iter().enumerate() {
let control_node = sparse_path.get(depth as u8).unwrap();
assert_eq!(control_node, iter_node, "at depth {depth} for entry {i}");
}
let iter = sparse_path.clone().into_iter().enumerate().rev().skip(1);
for (depth, iter_node) in iter {
let control_node = sparse_path.get(depth as u8).unwrap();
assert_eq!(
control_node, iter_node,
"at depth {depth} for entry {i} during reverse-iteration",
);
}
}
}
}