miden-crypto/src/merkle/store/mod.rs
Victor Lopez 84086bdb95
feat: add merkle path containers and return them on tree update
Returning tuples is often confusing as they don't convey meaning and it
should be used only when there is no possible ambiguity.

For `MerkleStore`, we had a couple of tuples being returned, and reading
the implementation was required in order to distinguish if they were
leaf values or computed roots.

This commit introduces two containers that will self-document these
returns: `RootPath` and `ValuePath`. It will also update `set_node` to
return both the new root & the new path, so we can prevent duplicated
traversals downstream when updating a node (one to update, the second to
fetch the new path/root).
2023-03-21 20:45:01 +01:00

369 lines
12 KiB
Rust

//! An in-memory data store for Merkle-lized data
//!
//! This is a in memory data store for Merkle trees, this store allows all the nodes of a tree
//! (leaves or internal) to live as long as necessary and without duplication, this allows the
//! implementation of efficient persistent data structures
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, MerkleError, MerklePath, MerklePathSet, MerkleTree,
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
};
#[cfg(test)]
mod tests;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct Node {
left: RpoDigest,
right: RpoDigest,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MerkleStore {
nodes: BTreeMap<RpoDigest, Node>,
}
impl Default for MerkleStore {
fn default() -> Self {
Self::new()
}
}
impl MerkleStore {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates an empty `MerkleStore` instance.
pub fn new() -> MerkleStore {
// pre-populate the store with the empty hashes
let subtrees = EmptySubtreeRoots::empty_hashes(64);
let nodes = subtrees
.iter()
.copied()
.zip(subtrees.iter().skip(1).copied())
.map(|(child, parent)| {
(
parent,
Node {
left: child,
right: child,
},
)
})
.collect();
MerkleStore { nodes }
}
/// Appends the provided merkle tree represented by its `leaves` to the set.
pub fn with_merkle_tree<I>(mut self, leaves: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = Word>,
{
self.add_merkle_tree(leaves)?;
Ok(self)
}
/// Appends the provided sparse merkle tree represented by its `entries` to the set.
pub fn with_sparse_merkle_tree<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
self.add_sparse_merkle_tree(entries)?;
Ok(self)
}
/// Appends the provided merkle path set.
pub fn with_merkle_path(
mut self,
index_value: u64,
node: Word,
path: MerklePath,
) -> Result<Self, MerkleError> {
self.add_merkle_path(index_value, node, path)?;
Ok(self)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the node at `index` rooted on the tree `root`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_node(&self, root: Word, index: NodeIndex) -> Result<Word, MerkleError> {
let mut hash: RpoDigest = root.into();
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
hash = if bit { node.right } else { node.left }
}
Ok(hash.into())
}
/// Returns the node at the specified `index` and its opening to the `root`.
///
/// The path starts at the sibling of the target leaf.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_path(&self, root: Word, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash: RpoDigest = root.into();
let mut path = Vec::with_capacity(index.depth().into());
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
hash = if bit {
path.push(node.left.into());
node.right
} else {
path.push(node.right.into());
node.left
}
}
// the path is computed from root to leaf, so it must be reversed
path.reverse();
Ok(ValuePath {
value: hash.into(),
path: MerklePath::new(path),
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Adds all the nodes of a Merkle tree represented by `leaves`.
///
/// This will instantiate a Merkle tree using `leaves` and include all the nodes into the
/// store.
///
/// # Errors
///
/// This method may return the following errors:
/// - `DepthTooSmall` if leaves is empty or contains only 1 element
/// - `NumLeavesNotPowerOfTwo` if the number of leaves is not a power-of-two
pub fn add_merkle_tree<I>(&mut self, leaves: I) -> Result<Word, MerkleError>
where
I: IntoIterator<Item = Word>,
{
let leaves: Vec<_> = leaves.into_iter().collect();
if leaves.len() < 2 {
return Err(MerkleError::DepthTooSmall(leaves.len() as u8));
}
let layers = leaves.len().ilog2();
let tree = MerkleTree::new(leaves)?;
let mut depth = 0;
let mut parent_offset = 1;
let mut child_offset = 2;
while depth < layers {
let layer_size = 1usize << depth;
for _ in 0..layer_size {
// merkle tree is using level form representation, so left and right siblings are
// next to each other
let left = tree.nodes[child_offset];
let right = tree.nodes[child_offset + 1];
self.nodes.insert(
tree.nodes[parent_offset].into(),
Node {
left: left.into(),
right: right.into(),
},
);
parent_offset += 1;
child_offset += 2;
}
depth += 1;
}
Ok(tree.nodes[1])
}
/// Adds all the nodes of a Sparse Merkle tree represented by `entries`.
///
/// This will instantiate a Sparse Merkle tree using `entries` and include all the nodes into
/// the store.
///
/// # Errors
///
/// This will return `InvalidEntriesCount` if the length of `entries` is not `63`.
pub fn add_sparse_merkle_tree<R, I>(&mut self, entries: R) -> Result<Word, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)?.with_leaves(entries)?;
for branch in smt.store.branches.values() {
let parent = Rpo256::merge(&[branch.left, branch.right]);
self.nodes.insert(
parent,
Node {
left: branch.left,
right: branch.right,
},
);
}
Ok(smt.root())
}
/// Adds all the nodes of a Merkle path represented by `path`, opening to `node`. Returns the
/// new root.
///
/// This will compute the sibling elements determined by the Merkle `path` and `node`, and
/// include all the nodes into the store.
pub fn add_merkle_path(
&mut self,
index_value: u64,
mut node: Word,
path: MerklePath,
) -> Result<Word, MerkleError> {
let mut index = NodeIndex::new(self.nodes.len() as u8, index_value);
for sibling in path {
let (left, right) = match index.is_value_odd() {
true => (sibling, node),
false => (node, sibling),
};
let parent = Rpo256::merge(&[left.into(), right.into()]);
self.nodes.insert(
parent,
Node {
left: left.into(),
right: right.into(),
},
);
index.move_up();
node = parent.into();
}
Ok(node)
}
/// Adds all the nodes of multiple Merkle paths into the store.
///
/// This will compute the sibling elements for each Merkle `path` and include all the nodes
/// into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
///
/// # Errors
///
/// Every path must resolve to the same root, otherwise this will return an `ConflictingRoots`
/// error.
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<Word, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
{
let paths: Vec<(u64, Word, MerklePath)> = paths.into_iter().collect();
let roots: BTreeSet<RpoDigest> = paths
.iter()
.map(|(index, node, path)| path.compute_root(*index, *node).into())
.collect();
if roots.len() != 1 {
return Err(MerkleError::ConflictingRoots(
roots.iter().map(|v| Word::from(*v)).collect(),
));
}
for (index_value, node, path) in paths {
self.add_merkle_path(index_value, node, path)?;
}
Ok(roots.iter().next().unwrap().into())
}
/// Appends the provided [MerklePathSet] into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_path_set(&mut self, path_set: &MerklePathSet) -> Result<Word, MerkleError> {
let root = path_set.root();
path_set.indexes().try_fold(root, |_, index| {
let node = path_set.get_node(index)?;
let path = path_set.get_path(index)?;
self.add_merkle_path(index.value(), node, path)
})
}
/// Sets a node to `value`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn set_node(
&mut self,
mut root: Word,
index: NodeIndex,
value: Word,
) -> Result<RootPath, MerkleError> {
let node = value;
let ValuePath { value, path } = self.get_path(root, index)?;
// performs the update only if the node value differs from the opening
if node != value {
root = self.add_merkle_path(index.value(), node, path.clone())?;
}
Ok(RootPath { root, path })
}
pub fn merge_roots(&mut self, root1: Word, root2: Word) -> Result<Word, MerkleError> {
let root1: RpoDigest = root1.into();
let root2: RpoDigest = root2.into();
if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root1.into(),
NodeIndex::new(0, 0),
))
} else if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root2.into(),
NodeIndex::new(0, 0),
))
} else {
let parent: Word = Rpo256::merge(&[root1, root2]).into();
self.nodes.insert(
parent.into(),
Node {
left: root1,
right: root2,
},
);
Ok(parent)
}
}
}