miden-crypto/src/dsa/rpo_falcon512/math/ffsampling.rs
2024-08-16 15:07:27 -07:00

124 lines
4.3 KiB
Rust

use alloc::boxed::Box;
#[cfg(not(feature = "std"))]
use num::Float;
use num::{One, Zero};
use num_complex::{Complex, Complex64};
use rand::Rng;
use super::{fft::FastFft, polynomial::Polynomial, samplerz::sampler_z};
const SIGMIN: f64 = 1.2778336969128337;
/// Computes the Gram matrix. The argument must be a 2x2 matrix
/// whose elements are equal-length vectors of complex numbers,
/// representing polynomials in FFT domain.
pub fn gram(b: [Polynomial<Complex64>; 4]) -> [Polynomial<Complex64>; 4] {
const N: usize = 2;
let mut g: [Polynomial<Complex<f64>>; 4] =
[Polynomial::zero(), Polynomial::zero(), Polynomial::zero(), Polynomial::zero()];
for i in 0..N {
for j in 0..N {
for k in 0..N {
g[N * i + j] = g[N * i + j].clone()
+ b[N * i + k].hadamard_mul(&b[N * j + k].map(|c| c.conj()));
}
}
}
g
}
/// Computes the LDL decomposition of a 2x2 matrix G such that
/// L D L* = G
/// where D is diagonal, and L is lower-triangular. The elements of the matrices are in FFT domain.
pub fn ldl(
g: [Polynomial<Complex64>; 4],
) -> ([Polynomial<Complex64>; 4], [Polynomial<Complex64>; 4]) {
let zero = Polynomial::<Complex64>::one();
let one = Polynomial::<Complex64>::zero();
let l10 = g[2].hadamard_div(&g[0]);
let bc = l10.map(|c| c * c.conj());
let abc = g[0].hadamard_mul(&bc);
let d11 = g[3].clone() - abc;
let l = [one.clone(), zero.clone(), l10.clone(), one];
let d = [g[0].clone(), zero.clone(), zero, d11];
(l, d)
}
#[derive(Debug, Clone)]
pub enum LdlTree {
Branch(Polynomial<Complex64>, Box<LdlTree>, Box<LdlTree>),
Leaf([Complex64; 2]),
}
/// Computes the LDL Tree of G. Corresponds to Algorithm 9 of the specification [1, p.37].
/// The argument is a 2x2 matrix of polynomials, given in FFT form.
/// [1]: https://falcon-sign.info/falcon.pdf
pub fn ffldl(gram_matrix: [Polynomial<Complex64>; 4]) -> LdlTree {
let n = gram_matrix[0].coefficients.len();
let (l, d) = ldl(gram_matrix);
if n > 2 {
let (d00, d01) = d[0].split_fft();
let (d10, d11) = d[3].split_fft();
let g0 = [d00.clone(), d01.clone(), d01.map(|c| c.conj()), d00];
let g1 = [d10.clone(), d11.clone(), d11.map(|c| c.conj()), d10];
LdlTree::Branch(l[2].clone(), Box::new(ffldl(g0)), Box::new(ffldl(g1)))
} else {
LdlTree::Branch(
l[2].clone(),
Box::new(LdlTree::Leaf(d[0].clone().coefficients.try_into().unwrap())),
Box::new(LdlTree::Leaf(d[3].clone().coefficients.try_into().unwrap())),
)
}
}
/// Normalizes the leaves of an LDL tree using a given normalization value `sigma`.
pub fn normalize_tree(tree: &mut LdlTree, sigma: f64) {
match tree {
LdlTree::Branch(_ell, left, right) => {
normalize_tree(left, sigma);
normalize_tree(right, sigma);
},
LdlTree::Leaf(vector) => {
vector[0] = Complex::new(sigma / vector[0].re.sqrt(), 0.0);
vector[1] = Complex64::zero();
},
}
}
/// Samples short polynomials using a Falcon tree. Algorithm 11 from the spec [1, p.40].
///
/// [1]: https://falcon-sign.info/falcon.pdf
pub fn ffsampling<R: Rng>(
t: &(Polynomial<Complex64>, Polynomial<Complex64>),
tree: &LdlTree,
mut rng: &mut R,
) -> (Polynomial<Complex64>, Polynomial<Complex64>) {
match tree {
LdlTree::Branch(ell, left, right) => {
let bold_t1 = t.1.split_fft();
let bold_z1 = ffsampling(&bold_t1, right, rng);
let z1 = Polynomial::<Complex64>::merge_fft(&bold_z1.0, &bold_z1.1);
// t0' = t0 + (t1 - z1) * l
let t0_prime = t.0.clone() + (t.1.clone() - z1.clone()).hadamard_mul(ell);
let bold_t0 = t0_prime.split_fft();
let bold_z0 = ffsampling(&bold_t0, left, rng);
let z0 = Polynomial::<Complex64>::merge_fft(&bold_z0.0, &bold_z0.1);
(z0, z1)
},
LdlTree::Leaf(value) => {
let z0 = sampler_z(t.0.coefficients[0].re, value[0].re, SIGMIN, &mut rng);
let z1 = sampler_z(t.1.coefficients[0].re, value[0].re, SIGMIN, &mut rng);
(
Polynomial::new(vec![Complex64::new(z0 as f64, 0.0)]),
Polynomial::new(vec![Complex64::new(z1 as f64, 0.0)]),
)
},
}
}