miden-crypto/src/merkle/smt/simple/mod.rs

412 lines
15 KiB
Rust

use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use super::{
super::ValuePath, EmptySubtreeRoots, InnerNode, InnerNodeInfo, LeafIndex, MerkleError,
MerklePath, MutationSet, NodeIndex, RpoDigest, SparseMerkleTree, Word, EMPTY_WORD,
SMT_MAX_DEPTH, SMT_MIN_DEPTH,
};
#[cfg(test)]
mod tests;
// SPARSE MERKLE TREE
// ================================================================================================
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
///
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SimpleSmt<const DEPTH: u8> {
root: RpoDigest,
leaves: BTreeMap<u64, Word>,
inner_nodes: BTreeMap<NodeIndex, InnerNode>,
}
impl<const DEPTH: u8> SimpleSmt<DEPTH> {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The default value used to compute the hash of empty leaves
pub const EMPTY_VALUE: Word = <Self as SparseMerkleTree<DEPTH>>::EMPTY_VALUE;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [SimpleSmt].
///
/// All leaves in the returned tree are set to [ZERO; 4].
///
/// # Errors
/// Returns an error if DEPTH is 0 or is greater than 64.
pub fn new() -> Result<Self, MerkleError> {
// validate the range of the depth.
if DEPTH < SMT_MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(DEPTH));
} else if SMT_MAX_DEPTH < DEPTH {
return Err(MerkleError::DepthTooBig(DEPTH as u64));
}
let root = *EmptySubtreeRoots::entry(DEPTH, 0);
Ok(Self {
root,
leaves: BTreeMap::new(),
inner_nodes: BTreeMap::new(),
})
}
/// Returns a new [SimpleSmt] instantiated with leaves set as specified by the provided entries.
///
/// All leaves omitted from the entries list are set to [ZERO; 4].
///
/// # Errors
/// Returns an error if:
/// - If the depth is 0 or is greater than 64.
/// - The number of entries exceeds the maximum tree capacity, that is 2^{depth}.
/// - The provided entries contain multiple values for the same key.
pub fn with_leaves(
entries: impl IntoIterator<Item = (u64, Word)>,
) -> Result<Self, MerkleError> {
// create an empty tree
let mut tree = Self::new()?;
// compute the max number of entries. We use an upper bound of depth 63 because we consider
// passing in a vector of size 2^64 infeasible.
let max_num_entries = 2_usize.pow(DEPTH.min(63).into());
// This being a sparse data structure, the EMPTY_WORD is not assigned to the `BTreeMap`, so
// entries with the empty value need additional tracking.
let mut key_set_to_zero = BTreeSet::new();
for (idx, (key, value)) in entries.into_iter().enumerate() {
if idx >= max_num_entries {
return Err(MerkleError::InvalidNumEntries(max_num_entries));
}
let old_value = tree.insert(LeafIndex::<DEPTH>::new(key)?, value);
if old_value != Self::EMPTY_VALUE || key_set_to_zero.contains(&key) {
return Err(MerkleError::DuplicateValuesForIndex(key));
}
if value == Self::EMPTY_VALUE {
key_set_to_zero.insert(key);
};
}
Ok(tree)
}
pub fn from_raw_parts(
inner_nodes: BTreeMap<NodeIndex, InnerNode>,
leaves: BTreeMap<u64, Word>,
root: RpoDigest,
) -> Result<Self, MerkleError> {
<Self as SparseMerkleTree<DEPTH>>::from_raw_parts(inner_nodes, leaves, root)
}
/// Wrapper around [`SimpleSmt::with_leaves`] which inserts leaves at contiguous indices
/// starting at index 0.
pub fn with_contiguous_leaves(
entries: impl IntoIterator<Item = Word>,
) -> Result<Self, MerkleError> {
Self::with_leaves(
entries
.into_iter()
.enumerate()
.map(|(idx, word)| (idx.try_into().expect("tree max depth is 2^8"), word)),
)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the depth of the tree
pub const fn depth(&self) -> u8 {
DEPTH
}
/// Returns the root of the tree
pub fn root(&self) -> RpoDigest {
<Self as SparseMerkleTree<DEPTH>>::root(self)
}
/// Returns the number of non-empty leaves in this tree.
pub fn num_leaves(&self) -> usize {
self.leaves.len()
}
/// Returns the leaf at the specified index.
pub fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
<Self as SparseMerkleTree<DEPTH>>::get_leaf(self, key)
}
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
/// the depth of this Merkle tree.
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > DEPTH {
Err(MerkleError::DepthTooBig(index.depth() as u64))
} else if index.depth() == DEPTH {
let leaf = self.get_leaf(&LeafIndex::<DEPTH>::try_from(index)?);
Ok(leaf.into())
} else {
Ok(self.get_inner_node(index).hash())
}
}
/// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
/// path to the leaf, as well as the leaf itself.
pub fn open(&self, key: &LeafIndex<DEPTH>) -> ValuePath {
<Self as SparseMerkleTree<DEPTH>>::open(self, key)
}
/// Returns a boolean value indicating whether the SMT is empty.
pub fn is_empty(&self) -> bool {
debug_assert_eq!(self.leaves.is_empty(), self.root == Self::EMPTY_ROOT);
self.root == Self::EMPTY_ROOT
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [SimpleSmt].
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
self.leaves.iter().map(|(i, w)| (*i, w))
}
/// Returns an iterator over the inner nodes of this [SimpleSmt].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.inner_nodes.values().map(|e| InnerNodeInfo {
value: e.hash(),
left: e.left,
right: e.right,
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts a value at the specified key, returning the previous value associated with that key.
/// Recall that by definition, any key that hasn't been updated is associated with
/// [`EMPTY_WORD`].
///
/// This also recomputes all hashes between the leaf (associated with the key) and the root,
/// updating the root itself.
pub fn insert(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Word {
<Self as SparseMerkleTree<DEPTH>>::insert(self, key, value)
}
/// Computes what changes are necessary to insert the specified key-value pairs into this
/// Merkle tree, allowing for validation before applying those changes.
///
/// This method returns a [`MutationSet`], which contains all the information for inserting
/// `kv_pairs` into this Merkle tree already calculated, including the new root hash, which can
/// be queried with [`MutationSet::root()`]. Once a mutation set is returned,
/// [`SimpleSmt::apply_mutations()`] can be called in order to commit these changes to the
/// Merkle tree, or [`drop()`] to discard them.
///
/// # Example
/// ```
/// # use miden_crypto::{hash::rpo::RpoDigest, Felt, Word};
/// # use miden_crypto::merkle::{LeafIndex, SimpleSmt, EmptySubtreeRoots, SMT_DEPTH};
/// let mut smt: SimpleSmt<3> = SimpleSmt::new().unwrap();
/// let pair = (LeafIndex::default(), Word::default());
/// let mutations = smt.compute_mutations(vec![pair]);
/// assert_eq!(mutations.root(), *EmptySubtreeRoots::entry(3, 0));
/// smt.apply_mutations(mutations);
/// assert_eq!(smt.root(), *EmptySubtreeRoots::entry(3, 0));
/// ```
pub fn compute_mutations(
&self,
kv_pairs: impl IntoIterator<Item = (LeafIndex<DEPTH>, Word)>,
) -> MutationSet<DEPTH, LeafIndex<DEPTH>, Word> {
<Self as SparseMerkleTree<DEPTH>>::compute_mutations(self, kv_pairs)
}
/// Apply the prospective mutations computed with [`SimpleSmt::compute_mutations()`] to this
/// tree.
///
/// # Errors
/// If `mutations` was computed on a tree with a different root than this one, returns
/// [`MerkleError::ConflictingRoots`] with a two-item [`alloc::vec::Vec`]. The first item is the
/// root hash the `mutations` were computed against, and the second item is the actual
/// current root of this tree.
pub fn apply_mutations(
&mut self,
mutations: MutationSet<DEPTH, LeafIndex<DEPTH>, Word>,
) -> Result<(), MerkleError> {
<Self as SparseMerkleTree<DEPTH>>::apply_mutations(self, mutations)
}
/// Inserts a subtree at the specified index. The depth at which the subtree is inserted is
/// computed as `DEPTH - SUBTREE_DEPTH`.
///
/// Returns the new root.
pub fn set_subtree<const SUBTREE_DEPTH: u8>(
&mut self,
subtree_insertion_index: u64,
subtree: SimpleSmt<SUBTREE_DEPTH>,
) -> Result<RpoDigest, MerkleError> {
if SUBTREE_DEPTH > DEPTH {
return Err(MerkleError::InvalidSubtreeDepth {
subtree_depth: SUBTREE_DEPTH,
tree_depth: DEPTH,
});
}
// Verify that `subtree_insertion_index` is valid.
let subtree_root_insertion_depth = DEPTH - SUBTREE_DEPTH;
let subtree_root_index =
NodeIndex::new(subtree_root_insertion_depth, subtree_insertion_index)?;
// add leaves
// --------------
// The subtree's leaf indices live in their own context - i.e. a subtree of depth `d`. If we
// insert the subtree at `subtree_insertion_index = 0`, then the subtree leaf indices are
// valid as they are. However, consider what happens when we insert at
// `subtree_insertion_index = 1`. The first leaf of our subtree now will have index `2^d`;
// you can see it as there's a full subtree sitting on its left. In general, for
// `subtree_insertion_index = i`, there are `i` subtrees sitting before the subtree we want
// to insert, so we need to adjust all its leaves by `i * 2^d`.
let leaf_index_shift: u64 = subtree_insertion_index * 2_u64.pow(SUBTREE_DEPTH.into());
for (subtree_leaf_idx, leaf_value) in subtree.leaves() {
let new_leaf_idx = leaf_index_shift + subtree_leaf_idx;
debug_assert!(new_leaf_idx < 2_u64.pow(DEPTH.into()));
self.leaves.insert(new_leaf_idx, *leaf_value);
}
// add subtree's branch nodes (which includes the root)
// --------------
for (branch_idx, branch_node) in subtree.inner_nodes {
let new_branch_idx = {
let new_depth = subtree_root_insertion_depth + branch_idx.depth();
let new_value = subtree_insertion_index * 2_u64.pow(branch_idx.depth().into())
+ branch_idx.value();
NodeIndex::new(new_depth, new_value).expect("index guaranteed to be valid")
};
self.inner_nodes.insert(new_branch_idx, branch_node);
}
// recompute nodes starting from subtree root
// --------------
self.recompute_nodes_from_index_to_root(subtree_root_index, subtree.root);
Ok(self.root)
}
}
impl<const DEPTH: u8> SparseMerkleTree<DEPTH> for SimpleSmt<DEPTH> {
type Key = LeafIndex<DEPTH>;
type Value = Word;
type Leaf = Word;
type Opening = ValuePath;
const EMPTY_VALUE: Self::Value = EMPTY_WORD;
const EMPTY_ROOT: RpoDigest = *EmptySubtreeRoots::entry(DEPTH, 0);
fn from_raw_parts(
inner_nodes: BTreeMap<NodeIndex, InnerNode>,
leaves: BTreeMap<u64, Word>,
root: RpoDigest,
) -> Result<Self, MerkleError> {
if cfg!(debug_assertions) {
let root_node = inner_nodes.get(&NodeIndex::root()).unwrap();
assert_eq!(root_node.hash(), root);
}
Ok(Self { root, inner_nodes, leaves })
}
fn with_entries(
entries: impl IntoIterator<Item = (LeafIndex<DEPTH>, Word)>,
) -> Result<Self, MerkleError> {
<SimpleSmt<DEPTH>>::with_leaves(
entries.into_iter().map(|(key, value)| (key.value(), value)),
)
}
fn root(&self) -> RpoDigest {
self.root
}
fn set_root(&mut self, root: RpoDigest) {
self.root = root;
}
fn get_inner_node(&self, index: NodeIndex) -> InnerNode {
self.inner_nodes
.get(&index)
.cloned()
.unwrap_or_else(|| EmptySubtreeRoots::get_inner_node(DEPTH, index.depth()))
}
fn insert_inner_node(&mut self, index: NodeIndex, inner_node: InnerNode) {
self.inner_nodes.insert(index, inner_node);
}
fn remove_inner_node(&mut self, index: NodeIndex) {
let _ = self.inner_nodes.remove(&index);
}
fn insert_value(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Option<Word> {
if value == Self::EMPTY_VALUE {
self.leaves.remove(&key.value())
} else {
self.leaves.insert(key.value(), value)
}
}
fn get_value(&self, key: &LeafIndex<DEPTH>) -> Word {
self.get_leaf(key)
}
fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
let leaf_pos = key.value();
match self.leaves.get(&leaf_pos) {
Some(word) => *word,
None => Self::EMPTY_VALUE,
}
}
fn hash_leaf(leaf: &Word) -> RpoDigest {
// `SimpleSmt` takes the leaf value itself as the hash
leaf.into()
}
fn construct_prospective_leaf(
&self,
_existing_leaf: Word,
_key: &LeafIndex<DEPTH>,
value: &Word,
) -> Word {
*value
}
fn key_to_leaf_index(key: &LeafIndex<DEPTH>) -> LeafIndex<DEPTH> {
*key
}
fn path_and_leaf_to_opening(path: MerklePath, leaf: Word) -> ValuePath {
(path, leaf).into()
}
fn pairs_to_leaf(mut pairs: Vec<(LeafIndex<DEPTH>, Word)>) -> Word {
// SimpleSmt can't have more than one value per key.
assert_eq!(pairs.len(), 1);
let (_key, value) = pairs.pop().unwrap();
value
}
}