miden-crypto/src/merkle/simple_smt/mod.rs

265 lines
8.8 KiB
Rust

use super::{
BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256,
RpoDigest, Vec, Word,
};
#[cfg(test)]
mod tests;
// SPARSE MERKLE TREE
// ================================================================================================
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SimpleSmt {
depth: u8,
root: Word,
leaves: BTreeMap<u64, Word>,
branches: BTreeMap<NodeIndex, BranchNode>,
empty_hashes: Vec<RpoDigest>,
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct BranchNode {
left: RpoDigest,
right: RpoDigest,
}
impl BranchNode {
fn parent(&self) -> RpoDigest {
Rpo256::merge(&[self.left, self.right])
}
}
impl SimpleSmt {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Minimum supported depth.
pub const MIN_DEPTH: u8 = 1;
/// Maximum supported depth.
pub const MAX_DEPTH: u8 = 64;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates a new simple SMT with the provided depth.
pub fn new(depth: u8) -> Result<Self, MerkleError> {
// validate the range of the depth.
if depth < Self::MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(depth));
} else if Self::MAX_DEPTH < depth {
return Err(MerkleError::DepthTooBig(depth as u64));
}
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
let root = empty_hashes[0].into();
Ok(Self {
root,
depth,
empty_hashes,
leaves: BTreeMap::new(),
branches: BTreeMap::new(),
})
}
/// Appends the provided entries as leaves of the tree.
///
/// # Errors
///
/// The function will fail if the provided entries count exceed the maximum tree capacity, that
/// is `2^{depth}`.
pub fn with_leaves<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
// check if the leaves count will fit the depth setup
let mut entries = entries.into_iter();
let max = 1 << self.depth.min(63);
if entries.len() > max {
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
}
// append leaves and return
entries.try_for_each(|(key, leaf)| self.insert_leaf(key, leaf))?;
Ok(self)
}
/// Replaces the internal empty digests used when a given depth doesn't contain a node.
pub fn with_empty_subtrees<I>(mut self, hashes: I) -> Self
where
I: IntoIterator<Item = RpoDigest>,
{
self.replace_empty_subtrees(hashes.into_iter().collect());
self
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> Word {
self.root
}
/// Returns the depth of this Merkle tree.
pub const fn depth(&self) -> u8 {
self.depth
}
// PROVIDERS
// --------------------------------------------------------------------------------------------
/// Returns the set count of the keys of the leaves.
pub fn leaves_count(&self) -> usize {
self.leaves.len()
}
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > self.depth() {
Err(MerkleError::DepthTooBig(index.depth() as u64))
} else if index.depth() == self.depth() {
self.get_leaf_node(index.value())
.or_else(|| {
self.empty_hashes
.get(index.depth() as usize)
.copied()
.map(Word::from)
})
.ok_or(MerkleError::NodeNotInSet(index.value()))
} else {
let branch_node = self.get_branch_node(&index);
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
}
}
/// Returns a Merkle path from the node at the specified key to the root. The node itself is
/// not included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
}
let mut path = Vec::with_capacity(index.depth() as usize);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.get_branch_node(&index);
let value = if is_right { left } else { right };
path.push(*value);
}
Ok(path.into())
}
/// Return a Merkle path from the leaf at the specified key to the root. The leaf itself is not
/// included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified key does not exist as a leaf node.
pub fn get_leaf_path(&self, key: u64) -> Result<MerklePath, MerkleError> {
let index = NodeIndex::new(self.depth(), key)?;
self.get_path(index)
}
/// Iterator over the inner nodes of the [SimpleSmt].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.branches.values().map(|e| InnerNodeInfo {
value: e.parent().into(),
left: e.left.into(),
right: e.right.into(),
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the
/// tree.
///
/// # Errors
/// Returns an error if the specified key is not a valid leaf index for this tree.
pub fn update_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
let index = NodeIndex::new(self.depth(), key)?;
if !self.check_leaf_node_exists(key) {
return Err(MerkleError::NodeNotInSet(index.value()));
}
self.insert_leaf(key, value)?;
Ok(())
}
/// Inserts a leaf located at the specified key, and recomputes hashes by walking up the tree
pub fn insert_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
self.insert_leaf_node(key, value);
// TODO consider using a map `index |-> word` instead of `index |-> (word, word)`
let mut index = NodeIndex::new(self.depth(), key)?;
let mut value = RpoDigest::from(value);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.get_branch_node(&index);
let (left, right) = if is_right {
(left, value)
} else {
(value, right)
};
self.insert_branch_node(index, left, right);
value = Rpo256::merge(&[left, right]);
}
self.root = value.into();
Ok(())
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
fn replace_empty_subtrees(&mut self, hashes: Vec<RpoDigest>) {
self.empty_hashes = hashes;
}
fn check_leaf_node_exists(&self, key: u64) -> bool {
self.leaves.contains_key(&key)
}
fn get_leaf_node(&self, key: u64) -> Option<Word> {
self.leaves.get(&key).copied()
}
fn insert_leaf_node(&mut self, key: u64, node: Word) {
self.leaves.insert(key, node);
}
fn get_branch_node(&self, index: &NodeIndex) -> BranchNode {
self.branches.get(index).cloned().unwrap_or_else(|| {
let node = self.empty_hashes[index.depth() as usize + 1];
BranchNode {
left: node,
right: node,
}
})
}
fn insert_branch_node(&mut self, index: NodeIndex, left: RpoDigest, right: RpoDigest) {
let branch = BranchNode { left, right };
self.branches.insert(index, branch);
}
}