miden-crypto/src/merkle/smt/simple/mod.rs
Qyriad da2856af6c feat(smt): implement root-checked insertion
This commit implements SparseMerkleTree::insert_ensure_root(), a version
of SparseMerkleTree::insert() that prevents modification of the tree if
the insert turns out to not result in the correct tree root (i.e., the
transaction is not valid).

This is an initial step towards issue 222.

As a logical next step, generalizing this to validation of inserting
multiple values at once will directly enable removing Merkle tree clones
in miden-node InnerState::apply_block().

For further work, as we generalize pre-validation for mutations we will
want a separate type to represent an arbitrary set of prospective
mutations on the Merkle tree and their validity, like the `ChangeSet`
type suggested in the issue.
2024-08-27 16:59:15 -06:00

338 lines
12 KiB
Rust

use alloc::collections::{BTreeMap, BTreeSet};
use super::{
super::ValuePath, EmptySubtreeRoots, InnerNode, InnerNodeInfo, LeafIndex, MerkleError,
MerklePath, NodeIndex, RpoDigest, SparseMerkleTree, Word, EMPTY_WORD, SMT_MAX_DEPTH,
SMT_MIN_DEPTH,
};
#[cfg(test)]
mod tests;
// SPARSE MERKLE TREE
// ================================================================================================
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
///
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SimpleSmt<const DEPTH: u8> {
root: RpoDigest,
leaves: BTreeMap<u64, Word>,
inner_nodes: BTreeMap<NodeIndex, InnerNode>,
}
impl<const DEPTH: u8> SimpleSmt<DEPTH> {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The default value used to compute the hash of empty leaves
pub const EMPTY_VALUE: Word = <Self as SparseMerkleTree<DEPTH>>::EMPTY_VALUE;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [SimpleSmt].
///
/// All leaves in the returned tree are set to [ZERO; 4].
///
/// # Errors
/// Returns an error if DEPTH is 0 or is greater than 64.
pub fn new() -> Result<Self, MerkleError> {
// validate the range of the depth.
if DEPTH < SMT_MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(DEPTH));
} else if SMT_MAX_DEPTH < DEPTH {
return Err(MerkleError::DepthTooBig(DEPTH as u64));
}
let root = *EmptySubtreeRoots::entry(DEPTH, 0);
Ok(Self {
root,
leaves: BTreeMap::new(),
inner_nodes: BTreeMap::new(),
})
}
/// Returns a new [SimpleSmt] instantiated with leaves set as specified by the provided entries.
///
/// All leaves omitted from the entries list are set to [ZERO; 4].
///
/// # Errors
/// Returns an error if:
/// - If the depth is 0 or is greater than 64.
/// - The number of entries exceeds the maximum tree capacity, that is 2^{depth}.
/// - The provided entries contain multiple values for the same key.
pub fn with_leaves(
entries: impl IntoIterator<Item = (u64, Word)>,
) -> Result<Self, MerkleError> {
// create an empty tree
let mut tree = Self::new()?;
// compute the max number of entries. We use an upper bound of depth 63 because we consider
// passing in a vector of size 2^64 infeasible.
let max_num_entries = 2_usize.pow(DEPTH.min(63).into());
// This being a sparse data structure, the EMPTY_WORD is not assigned to the `BTreeMap`, so
// entries with the empty value need additional tracking.
let mut key_set_to_zero = BTreeSet::new();
for (idx, (key, value)) in entries.into_iter().enumerate() {
if idx >= max_num_entries {
return Err(MerkleError::InvalidNumEntries(max_num_entries));
}
let old_value = tree.insert(LeafIndex::<DEPTH>::new(key)?, value);
if old_value != Self::EMPTY_VALUE || key_set_to_zero.contains(&key) {
return Err(MerkleError::DuplicateValuesForIndex(key));
}
if value == Self::EMPTY_VALUE {
key_set_to_zero.insert(key);
};
}
Ok(tree)
}
/// Wrapper around [`SimpleSmt::with_leaves`] which inserts leaves at contiguous indices
/// starting at index 0.
pub fn with_contiguous_leaves(
entries: impl IntoIterator<Item = Word>,
) -> Result<Self, MerkleError> {
Self::with_leaves(
entries
.into_iter()
.enumerate()
.map(|(idx, word)| (idx.try_into().expect("tree max depth is 2^8"), word)),
)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the depth of the tree
pub const fn depth(&self) -> u8 {
DEPTH
}
/// Returns the root of the tree
pub fn root(&self) -> RpoDigest {
<Self as SparseMerkleTree<DEPTH>>::root(self)
}
/// Returns the number of non-empty leaves in this tree.
pub fn num_leaves(&self) -> usize {
self.leaves.len()
}
/// Returns the leaf at the specified index.
pub fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
<Self as SparseMerkleTree<DEPTH>>::get_leaf(self, key)
}
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
/// the depth of this Merkle tree.
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > DEPTH {
Err(MerkleError::DepthTooBig(index.depth() as u64))
} else if index.depth() == DEPTH {
let leaf = self.get_leaf(&LeafIndex::<DEPTH>::try_from(index)?);
Ok(leaf.into())
} else {
Ok(self.get_inner_node(index).hash())
}
}
/// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
/// path to the leaf, as well as the leaf itself.
pub fn open(&self, key: &LeafIndex<DEPTH>) -> ValuePath {
<Self as SparseMerkleTree<DEPTH>>::open(self, key)
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [SimpleSmt].
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
self.leaves.iter().map(|(i, w)| (*i, w))
}
/// Returns an iterator over the inner nodes of this [SimpleSmt].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.inner_nodes.values().map(|e| InnerNodeInfo {
value: e.hash(),
left: e.left,
right: e.right,
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts a value at the specified key, returning the previous value associated with that key.
/// Recall that by definition, any key that hasn't been updated is associated with
/// [`EMPTY_WORD`].
///
/// This also recomputes all hashes between the leaf (associated with the key) and the root,
/// updating the root itself.
pub fn insert(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Word {
<Self as SparseMerkleTree<DEPTH>>::insert(self, key, value)
}
/// Like [`Self::insert()`], but only performs the insert if the the new tree's root
/// hash would be equal to the hash given in `expected_root`.
///
/// # Errors
/// Returns [`MerkleError::ConflictingRoots`] with a two-item [alloc::vec::Vec] if the new
/// root of the tree is different from the expected root. The first item of the vector is
/// the expected root, and the second is actual root.
///
/// No mutations are performed if the roots do no match.
pub fn insert_ensure_root(
&mut self,
key: LeafIndex<DEPTH>,
value: Word,
expected_root: RpoDigest,
) -> Result<Word, MerkleError> {
<Self as SparseMerkleTree<DEPTH>>::insert_ensure_root(self, key, value, expected_root)
}
/// Inserts a subtree at the specified index. The depth at which the subtree is inserted is
/// computed as `DEPTH - SUBTREE_DEPTH`.
///
/// Returns the new root.
pub fn set_subtree<const SUBTREE_DEPTH: u8>(
&mut self,
subtree_insertion_index: u64,
subtree: SimpleSmt<SUBTREE_DEPTH>,
) -> Result<RpoDigest, MerkleError> {
if SUBTREE_DEPTH > DEPTH {
return Err(MerkleError::InvalidSubtreeDepth {
subtree_depth: SUBTREE_DEPTH,
tree_depth: DEPTH,
});
}
// Verify that `subtree_insertion_index` is valid.
let subtree_root_insertion_depth = DEPTH - SUBTREE_DEPTH;
let subtree_root_index =
NodeIndex::new(subtree_root_insertion_depth, subtree_insertion_index)?;
// add leaves
// --------------
// The subtree's leaf indices live in their own context - i.e. a subtree of depth `d`. If we
// insert the subtree at `subtree_insertion_index = 0`, then the subtree leaf indices are
// valid as they are. However, consider what happens when we insert at
// `subtree_insertion_index = 1`. The first leaf of our subtree now will have index `2^d`;
// you can see it as there's a full subtree sitting on its left. In general, for
// `subtree_insertion_index = i`, there are `i` subtrees sitting before the subtree we want
// to insert, so we need to adjust all its leaves by `i * 2^d`.
let leaf_index_shift: u64 = subtree_insertion_index * 2_u64.pow(SUBTREE_DEPTH.into());
for (subtree_leaf_idx, leaf_value) in subtree.leaves() {
let new_leaf_idx = leaf_index_shift + subtree_leaf_idx;
debug_assert!(new_leaf_idx < 2_u64.pow(DEPTH.into()));
self.leaves.insert(new_leaf_idx, *leaf_value);
}
// add subtree's branch nodes (which includes the root)
// --------------
for (branch_idx, branch_node) in subtree.inner_nodes {
let new_branch_idx = {
let new_depth = subtree_root_insertion_depth + branch_idx.depth();
let new_value = subtree_insertion_index * 2_u64.pow(branch_idx.depth().into())
+ branch_idx.value();
NodeIndex::new(new_depth, new_value).expect("index guaranteed to be valid")
};
self.inner_nodes.insert(new_branch_idx, branch_node);
}
// recompute nodes starting from subtree root
// --------------
self.recompute_nodes_from_index_to_root(subtree_root_index, subtree.root);
Ok(self.root)
}
}
impl<const DEPTH: u8> SparseMerkleTree<DEPTH> for SimpleSmt<DEPTH> {
type Key = LeafIndex<DEPTH>;
type Value = Word;
type Leaf = Word;
type Opening = ValuePath;
const EMPTY_VALUE: Self::Value = EMPTY_WORD;
fn root(&self) -> RpoDigest {
self.root
}
fn set_root(&mut self, root: RpoDigest) {
self.root = root;
}
fn get_inner_node(&self, index: NodeIndex) -> InnerNode {
self.inner_nodes.get(&index).cloned().unwrap_or_else(|| {
let node = EmptySubtreeRoots::entry(DEPTH, index.depth() + 1);
InnerNode { left: *node, right: *node }
})
}
fn insert_inner_node(&mut self, index: NodeIndex, inner_node: InnerNode) {
self.inner_nodes.insert(index, inner_node);
}
fn remove_inner_node(&mut self, index: NodeIndex) {
let _ = self.inner_nodes.remove(&index);
}
fn insert_value(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Option<Word> {
if value == Self::EMPTY_VALUE {
self.leaves.remove(&key.value())
} else {
self.leaves.insert(key.value(), value)
}
}
fn get_value(&self, key: &LeafIndex<DEPTH>) -> Word {
self.get_leaf(key)
}
fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
let leaf_pos = key.value();
match self.leaves.get(&leaf_pos) {
Some(word) => *word,
None => Self::EMPTY_VALUE,
}
}
fn hash_leaf(leaf: &Word) -> RpoDigest {
// `SimpleSmt` takes the leaf value itself as the hash
leaf.into()
}
fn hash_prospective_leaf(&self, _key: &LeafIndex<DEPTH>, value: &Word) -> RpoDigest {
Self::hash_leaf(value)
}
fn key_to_leaf_index(key: &LeafIndex<DEPTH>) -> LeafIndex<DEPTH> {
*key
}
fn path_and_leaf_to_opening(path: MerklePath, leaf: Word) -> ValuePath {
(path, leaf).into()
}
}