This will be composed into depth-8-subtree-based computation of entire sparse Merkle trees.
149 lines
5.4 KiB
Rust
149 lines
5.4 KiB
Rust
use alloc::{collections::BTreeMap, vec::Vec};
|
|
|
|
use super::{
|
|
NodeIndex, PairComputations, SmtLeaf, SparseMerkleTree, SubtreeLeaf, SubtreeLeavesIter,
|
|
COLS_PER_SUBTREE, SUBTREE_DEPTH,
|
|
};
|
|
|
|
use crate::{
|
|
hash::rpo::RpoDigest,
|
|
merkle::{Smt, SMT_DEPTH},
|
|
Felt, Word, ONE,
|
|
};
|
|
|
|
fn smtleaf_to_subtree_leaf(leaf: &SmtLeaf) -> SubtreeLeaf {
|
|
SubtreeLeaf {
|
|
col: leaf.index().index.value(),
|
|
hash: leaf.hash(),
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_sorted_pairs_to_leaves() {
|
|
let entries: Vec<(RpoDigest, Word)> = vec![
|
|
// Subtree 0.
|
|
(RpoDigest::new([ONE, ONE, ONE, Felt::new(16)]), [ONE; 4]),
|
|
(RpoDigest::new([ONE, ONE, ONE, Felt::new(17)]), [ONE; 4]),
|
|
// Leaf index collision.
|
|
(RpoDigest::new([ONE, ONE, Felt::new(10), Felt::new(20)]), [ONE; 4]),
|
|
(RpoDigest::new([ONE, ONE, Felt::new(20), Felt::new(20)]), [ONE; 4]),
|
|
// Subtree 1. Normal single leaf again.
|
|
(RpoDigest::new([ONE, ONE, ONE, Felt::new(400)]), [ONE; 4]), // Subtree boundary.
|
|
(RpoDigest::new([ONE, ONE, ONE, Felt::new(401)]), [ONE; 4]),
|
|
// Subtree 2. Another normal leaf.
|
|
(RpoDigest::new([ONE, ONE, ONE, Felt::new(1024)]), [ONE; 4]),
|
|
];
|
|
|
|
let control = Smt::with_entries(entries.clone()).unwrap();
|
|
|
|
let control_leaves: Vec<SmtLeaf> = {
|
|
let mut entries_iter = entries.iter().cloned();
|
|
let mut next_entry = || entries_iter.next().unwrap();
|
|
let control_leaves = vec![
|
|
// Subtree 0.
|
|
SmtLeaf::Single(next_entry()),
|
|
SmtLeaf::Single(next_entry()),
|
|
SmtLeaf::new_multiple(vec![next_entry(), next_entry()]).unwrap(),
|
|
// Subtree 1.
|
|
SmtLeaf::Single(next_entry()),
|
|
SmtLeaf::Single(next_entry()),
|
|
// Subtree 2.
|
|
SmtLeaf::Single(next_entry()),
|
|
];
|
|
assert_eq!(entries_iter.next(), None);
|
|
control_leaves
|
|
};
|
|
|
|
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = {
|
|
let mut control_leaves_iter = control_leaves.iter();
|
|
let mut next_leaf = || control_leaves_iter.next().unwrap();
|
|
|
|
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = [
|
|
// Subtree 0.
|
|
vec![next_leaf(), next_leaf(), next_leaf()],
|
|
// Subtree 1.
|
|
vec![next_leaf(), next_leaf()],
|
|
// Subtree 2.
|
|
vec![next_leaf()],
|
|
]
|
|
.map(|subtree| subtree.into_iter().map(smtleaf_to_subtree_leaf).collect())
|
|
.to_vec();
|
|
assert_eq!(control_leaves_iter.next(), None);
|
|
control_subtree_leaves
|
|
};
|
|
|
|
let subtrees: PairComputations<u64, SmtLeaf> = Smt::sorted_pairs_to_leaves(entries);
|
|
// This will check that the hashes, columns, and subtree assignments all match.
|
|
assert_eq!(subtrees.leaves, control_subtree_leaves);
|
|
|
|
// Flattening and re-separating out the leaves into subtrees should have the same result.
|
|
let mut all_leaves: Vec<SubtreeLeaf> = subtrees.leaves.clone().into_iter().flatten().collect();
|
|
let re_grouped: Vec<Vec<_>> = SubtreeLeavesIter::from_leaves(&mut all_leaves).collect();
|
|
assert_eq!(subtrees.leaves, re_grouped);
|
|
|
|
// Then finally we might as well check the computed leaf nodes too.
|
|
let control_leaves: BTreeMap<u64, SmtLeaf> = control
|
|
.leaves()
|
|
.map(|(index, value)| (index.index.value(), value.clone()))
|
|
.collect();
|
|
|
|
for (column, test_leaf) in subtrees.nodes {
|
|
if test_leaf.is_empty() {
|
|
continue;
|
|
}
|
|
let control_leaf = control_leaves
|
|
.get(&column)
|
|
.unwrap_or_else(|| panic!("no leaf node found for column {column}"));
|
|
assert_eq!(control_leaf, &test_leaf);
|
|
}
|
|
}
|
|
|
|
// Helper for the below tests.
|
|
fn generate_entries(pair_count: u64) -> Vec<(RpoDigest, Word)> {
|
|
(0..pair_count)
|
|
.map(|i| {
|
|
let leaf_index = ((i as f64 / pair_count as f64) * (pair_count as f64)) as u64;
|
|
let key = RpoDigest::new([ONE, ONE, Felt::new(i), Felt::new(leaf_index)]);
|
|
let value = [ONE, ONE, ONE, Felt::new(i)];
|
|
(key, value)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
#[test]
|
|
fn test_single_subtree() {
|
|
// A single subtree's worth of leaves.
|
|
const PAIR_COUNT: u64 = COLS_PER_SUBTREE;
|
|
|
|
let entries = generate_entries(PAIR_COUNT);
|
|
|
|
let control = Smt::with_entries(entries.clone()).unwrap();
|
|
|
|
// `entries` should already be sorted by nature of how we constructed it.
|
|
let leaves = Smt::sorted_pairs_to_leaves(entries).leaves;
|
|
let leaves = leaves.into_iter().next().unwrap();
|
|
|
|
let (first_subtree, next_leaves) = Smt::build_subtree(leaves, SMT_DEPTH);
|
|
assert!(!first_subtree.is_empty());
|
|
|
|
// The inner nodes computed from that subtree should match the nodes in our control tree.
|
|
for (index, node) in first_subtree.into_iter() {
|
|
let control = control.get_inner_node(index);
|
|
assert_eq!(
|
|
control, node,
|
|
"subtree-computed node at index {index:?} does not match control",
|
|
);
|
|
}
|
|
|
|
// The "next leaves" returned should also have matching hashes from the equivalent nodes in
|
|
// our control tree.
|
|
for SubtreeLeaf { col, hash } in next_leaves {
|
|
let index = NodeIndex::new(SMT_DEPTH - SUBTREE_DEPTH, col).unwrap();
|
|
let control_node = control.get_inner_node(index);
|
|
let control = control_node.hash();
|
|
assert_eq!(
|
|
control, hash,
|
|
"subtree-computed next leaf at index {index:?} does not match control",
|
|
);
|
|
}
|
|
}
|