miden-crypto/src/merkle/partial_mt/tests.rs
Andrey Khmuro 08aec4443c
Enhancement of the Partial Merkle Tree (#163)
feat: implement additional functionality for the PartialMerkleTree
2023-07-06 00:19:03 +03:00

463 lines
15 KiB
Rust

use super::{
super::{
digests_to_words, int_to_node, BTreeMap, DefaultMerkleStore as MerkleStore, MerkleTree,
NodeIndex, PartialMerkleTree,
},
Deserializable, InnerNodeInfo, RpoDigest, Serializable, ValuePath, Vec,
};
// TEST DATA
// ================================================================================================
const NODE10: NodeIndex = NodeIndex::new_unchecked(1, 0);
const NODE11: NodeIndex = NodeIndex::new_unchecked(1, 1);
const NODE20: NodeIndex = NodeIndex::new_unchecked(2, 0);
const NODE21: NodeIndex = NodeIndex::new_unchecked(2, 1);
const NODE22: NodeIndex = NodeIndex::new_unchecked(2, 2);
const NODE23: NodeIndex = NodeIndex::new_unchecked(2, 3);
const NODE30: NodeIndex = NodeIndex::new_unchecked(3, 0);
const NODE31: NodeIndex = NodeIndex::new_unchecked(3, 1);
const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2);
const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
const VALUES8: [RpoDigest; 8] = [
int_to_node(30),
int_to_node(31),
int_to_node(32),
int_to_node(33),
int_to_node(34),
int_to_node(35),
int_to_node(36),
int_to_node(37),
];
// TESTS
// ================================================================================================
// For the Partial Merkle Tree tests we will use parts of the Merkle Tree which full form is
// illustrated below:
//
// __________ root __________
// / \
// ____ 10 ____ ____ 11 ____
// / \ / \
// 20 21 22 23
// / \ / \ / \ / \
// (30) (31) (32) (33) (34) (35) (36) (37)
//
// Where node number is a concatenation of its depth and index. For example, node with
// NodeIndex(3, 5) will be labeled as `35`. Leaves of the tree are shown as nodes with parenthesis
// (33).
/// Checks that creation of the PMT with `with_leaves()` constructor is working correctly.
#[test]
fn with_leaves() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let leaf_nodes_vec = vec![
(NODE20, mt.get_node(NODE20).unwrap()),
(NODE32, mt.get_node(NODE32).unwrap()),
(NODE33, mt.get_node(NODE33).unwrap()),
(NODE22, mt.get_node(NODE22).unwrap()),
(NODE23, mt.get_node(NODE23).unwrap()),
];
let leaf_nodes: BTreeMap<NodeIndex, RpoDigest> = leaf_nodes_vec.into_iter().collect();
let pmt = PartialMerkleTree::with_leaves(leaf_nodes).unwrap();
assert_eq!(expected_root, pmt.root())
}
/// Checks that `with_leaves()` function returns an error when using incomplete set of nodes.
#[test]
fn err_with_leaves() {
// NODE22 is missing
let leaf_nodes_vec = vec![
(NODE20, int_to_node(20)),
(NODE32, int_to_node(32)),
(NODE33, int_to_node(33)),
(NODE23, int_to_node(23)),
];
let leaf_nodes: BTreeMap<NodeIndex, RpoDigest> = leaf_nodes_vec.into_iter().collect();
assert!(PartialMerkleTree::with_leaves(leaf_nodes).is_err());
}
/// Checks that root returned by `root()` function is equal to the expected one.
#[test]
fn get_root() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert_eq!(expected_root, pmt.root());
}
/// This test checks correctness of the `add_path()` and `get_path()` functions. First it creates a
/// PMT using `add_path()` by adding Merkle Paths from node 33 and node 22 to the empty PMT. Then
/// it checks that paths returned by `get_path()` function are equal to the expected ones.
#[test]
fn add_and_get_paths() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let expected_path33 = ms.get_path(expected_root, NODE33).unwrap();
let expected_path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, expected_path33.value, expected_path33.path.clone()).unwrap();
pmt.add_path(2, expected_path22.value, expected_path22.path.clone()).unwrap();
let path33 = pmt.get_path(NODE33).unwrap();
let path22 = pmt.get_path(NODE22).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_path33.path, path33);
assert_eq!(expected_path22.path, path22);
assert_eq!(expected_root, actual_root);
}
/// Checks that function `get_node` used on nodes 10 and 32 returns expected values.
#[test]
fn get_node() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert_eq!(ms.get_node(expected_root, NODE32).unwrap(), pmt.get_node(NODE32).unwrap());
assert_eq!(ms.get_node(expected_root, NODE10).unwrap(), pmt.get_node(NODE10).unwrap());
}
/// Updates leaves of the PMT using `update_leaf()` function and checks that new root of the tree
/// is equal to the expected one.
#[test]
fn update_leaf() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let root = mt.root();
let mut ms = MerkleStore::from(&mt);
let path33 = ms.get_path(root, NODE33).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
let new_value32 = int_to_node(132);
let expected_root = ms.set_node(root, NODE32, new_value32).unwrap().root;
pmt.update_leaf(2, *new_value32).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_root, actual_root);
let new_value20 = int_to_node(120);
let expected_root = ms.set_node(expected_root, NODE20, new_value20).unwrap().root;
pmt.update_leaf(0, *new_value20).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_root, actual_root);
let new_value11 = int_to_node(111);
let expected_root = ms.set_node(expected_root, NODE11, new_value11).unwrap().root;
pmt.update_leaf(6, *new_value11).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_root, actual_root);
}
/// Checks that paths of the PMT returned by `paths()` function are equal to the expected ones.
#[test]
fn get_paths() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, path33.value, path33.path).unwrap();
pmt.add_path(2, path22.value, path22.path).unwrap();
// After PMT creation with path33 (33; 32, 20, 11) and path22 (22; 23, 10) we will have this
// tree:
//
// ______root______
// / \
// ___10___ ___11___
// / \ / \
// (20) 21 (22) (23)
// / \
// (32) (33)
//
// Which have leaf nodes 20, 22, 23, 32 and 33. Hence overall we will have 5 paths -- one path
// for each leaf.
let leaves = vec![NODE20, NODE22, NODE23, NODE32, NODE33];
let expected_paths: Vec<(NodeIndex, ValuePath)> = leaves
.iter()
.map(|&leaf| {
(
leaf,
ValuePath {
value: mt.get_node(leaf).unwrap(),
path: mt.get_path(leaf).unwrap(),
},
)
})
.collect();
let actual_paths = pmt.to_paths();
assert_eq!(expected_paths, actual_paths);
}
// Checks correctness of leaves determination when using the `leaves()` function.
#[test]
fn leaves() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
// After PMT creation with path33 (33; 32, 20, 11) we will have this tree:
//
// ______root______
// / \
// ___10___ (11)
// / \
// (20) 21
// / \
// (32) (33)
//
// Which have leaf nodes 11, 20, 32 and 33.
let value11 = mt.get_node(NODE11).unwrap();
let value20 = mt.get_node(NODE20).unwrap();
let value32 = mt.get_node(NODE32).unwrap();
let value33 = mt.get_node(NODE33).unwrap();
let leaves = vec![(NODE11, value11), (NODE20, value20), (NODE32, value32), (NODE33, value33)];
let expected_leaves = leaves.iter().copied();
assert!(expected_leaves.eq(pmt.leaves()));
pmt.add_path(2, path22.value, path22.path).unwrap();
// After adding the path22 (22; 23, 10) to the existing PMT we will have this tree:
//
// ______root______
// / \
// ___10___ ___11___
// / \ / \
// (20) 21 (22) (23)
// / \
// (32) (33)
//
// Which have leaf nodes 20, 22, 23, 32 and 33.
let value20 = mt.get_node(NODE20).unwrap();
let value22 = mt.get_node(NODE22).unwrap();
let value23 = mt.get_node(NODE23).unwrap();
let value32 = mt.get_node(NODE32).unwrap();
let value33 = mt.get_node(NODE33).unwrap();
let leaves = vec![
(NODE20, value20),
(NODE22, value22),
(NODE23, value23),
(NODE32, value32),
(NODE33, value33),
];
let expected_leaves = leaves.iter().copied();
assert!(expected_leaves.eq(pmt.leaves()));
}
/// Checks that nodes of the PMT returned by `inner_nodes()` function are equal to the expected ones.
#[test]
fn test_inner_node_iterator() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
// get actual inner nodes
let actual: Vec<InnerNodeInfo> = pmt.inner_nodes().collect();
let expected_n00 = mt.root();
let expected_n10 = mt.get_node(NODE10).unwrap();
let expected_n11 = mt.get_node(NODE11).unwrap();
let expected_n20 = mt.get_node(NODE20).unwrap();
let expected_n21 = mt.get_node(NODE21).unwrap();
let expected_n32 = mt.get_node(NODE32).unwrap();
let expected_n33 = mt.get_node(NODE33).unwrap();
// create vector of the expected inner nodes
let mut expected = vec![
InnerNodeInfo {
value: expected_n00,
left: expected_n10,
right: expected_n11,
},
InnerNodeInfo {
value: expected_n10,
left: expected_n20,
right: expected_n21,
},
InnerNodeInfo {
value: expected_n21,
left: expected_n32,
right: expected_n33,
},
];
assert_eq!(actual, expected);
// add another path to the Partial Merkle Tree
pmt.add_path(2, path22.value, path22.path).unwrap();
// get new actual inner nodes
let actual: Vec<InnerNodeInfo> = pmt.inner_nodes().collect();
let expected_n22 = mt.get_node(NODE22).unwrap();
let expected_n23 = mt.get_node(NODE23).unwrap();
let info_11 = InnerNodeInfo {
value: expected_n11,
left: expected_n22,
right: expected_n23,
};
// add new inner node to the existing vertor
expected.insert(2, info_11);
assert_eq!(actual, expected);
}
/// Checks that serialization and deserialization implementations for the PMT are working
/// correctly.
#[test]
fn serialization() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let pmt = PartialMerkleTree::with_paths([
(3, path33.value, path33.path),
(2, path22.value, path22.path),
])
.unwrap();
let serialized_pmt = pmt.to_bytes();
let deserialized_pmt = PartialMerkleTree::read_from_bytes(&serialized_pmt).unwrap();
assert_eq!(deserialized_pmt, pmt);
}
/// Checks that deserialization fails with incorrect data.
#[test]
fn err_deserialization() {
let mut tree_bytes: Vec<u8> = vec![5];
tree_bytes.append(&mut NODE20.to_bytes());
tree_bytes.append(&mut int_to_node(20).to_bytes());
tree_bytes.append(&mut NODE21.to_bytes());
tree_bytes.append(&mut int_to_node(21).to_bytes());
// node with depth 1 could have index 0 or 1, but it has 2
tree_bytes.append(&mut vec![1, 2]);
tree_bytes.append(&mut int_to_node(11).to_bytes());
assert!(PartialMerkleTree::read_from_bytes(&tree_bytes).is_err());
}
/// Checks that addition of the path with different root will cause an error.
#[test]
fn err_add_path() {
let path33 = vec![int_to_node(1), int_to_node(2), int_to_node(3)].into();
let path22 = vec![int_to_node(4), int_to_node(5)].into();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, int_to_node(6), path33).unwrap();
assert!(pmt.add_path(2, int_to_node(7), path22).is_err());
}
/// Checks that the request of the node which is not in the PMT will cause an error.
#[test]
fn err_get_node() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.get_node(NODE22).is_err());
assert!(pmt.get_node(NODE23).is_err());
assert!(pmt.get_node(NODE30).is_err());
assert!(pmt.get_node(NODE31).is_err());
}
/// Checks that the request of the path from the leaf which is not in the PMT will cause an error.
#[test]
fn err_get_path() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.get_path(NODE22).is_err());
assert!(pmt.get_path(NODE23).is_err());
assert!(pmt.get_path(NODE30).is_err());
assert!(pmt.get_path(NODE31).is_err());
}
#[test]
fn err_update_leaf() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.update_leaf(8, *int_to_node(38)).is_err());
}