Merge pull request #120 from 0xPolygonMiden/next
Tracking PR for v0.3 release
This commit is contained in:
commit
b5eb68e46c
22 changed files with 1101 additions and 638 deletions
|
@ -1,3 +1,10 @@
|
|||
## 0.3.0 (2023-04-08)
|
||||
|
||||
- Added `depth` parameter to SMT constructors in `MerkleStore` (#115).
|
||||
- Optimized MMR peak hashing for Miden VM (#120).
|
||||
- Added `get_leaf_depth` method to `MerkleStore` (#119).
|
||||
- Added inner node iterators to `MerkleTree`, `SimpleSmt`, and `Mmr` (#117, #118, #121).
|
||||
|
||||
## 0.2.0 (2023-03-24)
|
||||
|
||||
- Implemented `Mmr` and related structs (#67).
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
[package]
|
||||
name = "miden-crypto"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
description = "Miden Cryptographic primitives"
|
||||
authors = ["miden contributors"]
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/0xPolygonMiden/crypto"
|
||||
documentation = "https://docs.rs/miden-crypto/0.2.0"
|
||||
documentation = "https://docs.rs/miden-crypto/0.3.0"
|
||||
categories = ["cryptography", "no-std"]
|
||||
keywords = ["miden", "crypto", "hash", "merkle"]
|
||||
edition = "2021"
|
||||
|
|
|
@ -13,7 +13,7 @@ For performance benchmarks of these hash functions and their comparison to other
|
|||
[Merkle module](./src/merkle/) provides a set of data structures related to Merkle trees. All these data structures are implemented using the RPO hash function described above. The data structures are:
|
||||
|
||||
* `MerkleTree`: a regular fully-balanced binary Merkle tree. The depth of this tree can be at most 64.
|
||||
* `SimpleSmt`: a Sparse Merkle Tree, mapping 63-bit keys to 4-element leaf values.
|
||||
* `SimpleSmt`: a Sparse Merkle Tree, mapping 64-bit keys to 4-element leaf values.
|
||||
* `MerklePathSet`: a collection of Merkle authentication paths all resolving to the same root. The length of the paths can be at most 64.
|
||||
* `MerkleStore`: a collection of Merkle trees of different heights designed to efficiently store trees with common subtrees.
|
||||
* `Mmr`: a Merkle mountain range structure designed to function as an append-only log.
|
||||
|
|
|
@ -28,7 +28,7 @@ The second scenario is that of sequential hashing where we take a sequence of le
|
|||
|
||||
| Function | BLAKE3 | SHA3 | Poseidon | Rp64_256 | RPO_256 |
|
||||
| ------------------- | -------| ------- | --------- | --------- | ------- |
|
||||
| Apple M1 Pro | 1.1 us | 1.5 us | 19.4 us | 118 us | 70 us |
|
||||
| Apple M1 Pro | 1.0 us | 1.5 us | 19.4 us | 118 us | 70 us |
|
||||
| Apple M2 | 1.0 us | 1.5 us | 17.4 us | 103 us | 65 us |
|
||||
| Amazon Graviton 3 | 1.4 us | | | | 114 us |
|
||||
| AMD Ryzen 9 5950X | 0.8 us | 1.7 us | 15.7 us | 120 us | 72 us |
|
||||
|
|
127
benches/store.rs
127
benches/store.rs
|
@ -18,17 +18,18 @@ fn random_word() -> Word {
|
|||
rand_array::<Felt, 4>().into()
|
||||
}
|
||||
|
||||
/// Generates a u64 in `0..range`.
|
||||
fn random_index(range: u64) -> u64 {
|
||||
rand_value::<u64>() % range
|
||||
/// Generates an index at the specified depth in `0..range`.
|
||||
fn random_index(range: u64, depth: u8) -> NodeIndex {
|
||||
let value = rand_value::<u64>() % range;
|
||||
NodeIndex::new(depth, value).unwrap()
|
||||
}
|
||||
|
||||
/// Benchmarks getting an empty leaf from the SMT and MerkleStore backends.
|
||||
fn get_empty_leaf_simplesmt(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("get_empty_leaf_simplesmt");
|
||||
|
||||
let depth = 63u8;
|
||||
let size = 2u64.pow(depth as u32);
|
||||
let depth = SimpleSmt::MAX_DEPTH;
|
||||
let size = u64::MAX;
|
||||
|
||||
// both SMT and the store are pre-populated with empty hashes, accessing these values is what is
|
||||
// being benchmarked here, so no values are inserted into the backends
|
||||
|
@ -38,16 +39,16 @@ fn get_empty_leaf_simplesmt(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size),
|
||||
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
|
||||
|| random_index(size, depth),
|
||||
|index| black_box(smt.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|
||||
|| random_index(size, depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -72,16 +73,16 @@ fn get_leaf_merkletree(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(mtree.get_node(NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(mtree.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -103,12 +104,12 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(63)
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let store = MerkleStore::new()
|
||||
.with_sparse_merkle_tree(smt_leaves)
|
||||
.with_sparse_merkle_tree(SimpleSmt::MAX_DEPTH, smt_leaves)
|
||||
.unwrap();
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
@ -116,16 +117,16 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(smt.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -136,8 +137,7 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
|
|||
fn get_node_of_empty_simplesmt(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("get_node_of_empty_simplesmt");
|
||||
|
||||
let depth = 63u8;
|
||||
let size = 2u64.pow(depth as u32);
|
||||
let depth = SimpleSmt::MAX_DEPTH;
|
||||
|
||||
// both SMT and the store are pre-populated with the empty hashes, accessing the internal nodes
|
||||
// of these values is what is being benchmarked here, so no values are inserted into the
|
||||
|
@ -146,19 +146,20 @@ fn get_node_of_empty_simplesmt(c: &mut Criterion) {
|
|||
let store = MerkleStore::new();
|
||||
let root = smt.root();
|
||||
let half_depth = depth / 2;
|
||||
let half_size = 2_u64.pow(half_depth as u32);
|
||||
|
||||
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size),
|
||||
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(smt.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -178,22 +179,22 @@ fn get_node_merkletree(c: &mut Criterion) {
|
|||
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
|
||||
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
|
||||
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
|
||||
let half_depth = mtree.depth() / 2;
|
||||
let root = mtree.root();
|
||||
let size_u64 = size as u64;
|
||||
let half_depth = mtree.depth() / 2;
|
||||
let half_size = 2_u64.pow(half_depth as u32);
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(mtree.get_node(NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(mtree.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -216,29 +217,29 @@ fn get_node_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(63)
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let store = MerkleStore::new()
|
||||
.with_sparse_merkle_tree(smt_leaves)
|
||||
.with_sparse_merkle_tree(SimpleSmt::MAX_DEPTH, smt_leaves)
|
||||
.unwrap();
|
||||
let root = smt.root();
|
||||
let size_u64 = size as u64;
|
||||
let half_depth = smt.depth() / 2;
|
||||
let half_size = 2_u64.pow(half_depth as u32);
|
||||
|
||||
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(smt.get_node(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|
||||
|| random_index(half_size, half_depth),
|
||||
|index| black_box(store.get_node(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -264,16 +265,16 @@ fn get_leaf_path_merkletree(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(mtree.get_path(NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(mtree.get_path(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(store.get_path(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -295,12 +296,12 @@ fn get_leaf_path_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let smt = SimpleSmt::new(63)
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let store = MerkleStore::new()
|
||||
.with_sparse_merkle_tree(smt_leaves)
|
||||
.with_sparse_merkle_tree(SimpleSmt::MAX_DEPTH, smt_leaves)
|
||||
.unwrap();
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
@ -308,16 +309,16 @@ fn get_leaf_path_simplesmt(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(smt.get_path(NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(smt.get_path(index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| random_index(size_u64),
|
||||
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
|
||||
|| random_index(size_u64, depth),
|
||||
|index| black_box(store.get_path(root, index)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -366,7 +367,7 @@ fn new(c: &mut Criterion) {
|
|||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>()
|
||||
},
|
||||
|l| black_box(SimpleSmt::new(63).unwrap().with_leaves(l)),
|
||||
|l| black_box(SimpleSmt::new(SimpleSmt::MAX_DEPTH).unwrap().with_leaves(l)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
});
|
||||
|
@ -382,7 +383,11 @@ fn new(c: &mut Criterion) {
|
|||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>()
|
||||
},
|
||||
|l| black_box(MerkleStore::new().with_sparse_merkle_tree(l)),
|
||||
|l| {
|
||||
black_box(
|
||||
MerkleStore::new().with_sparse_merkle_tree(SimpleSmt::MAX_DEPTH, l),
|
||||
)
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
},
|
||||
|
@ -409,7 +414,7 @@ fn update_leaf_merkletree(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
|
||||
b.iter_batched(
|
||||
|| (random_index(size_u64), random_word()),
|
||||
|| (rand_value::<u64>() % size_u64, random_word()),
|
||||
|(index, value)| black_box(mtree.update_leaf(index, value)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
|
@ -418,15 +423,12 @@ fn update_leaf_merkletree(c: &mut Criterion) {
|
|||
let mut store_root = root;
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| (random_index(size_u64), random_word()),
|
||||
|| (random_index(size_u64, depth), random_word()),
|
||||
|(index, value)| {
|
||||
// The MerkleTree automatically updates its internal root, the Store maintains
|
||||
// the old root and adds the new one. Here we update the root to have a fair
|
||||
// comparison
|
||||
store_root = store
|
||||
.set_node(root, NodeIndex::new(depth, index), value)
|
||||
.unwrap()
|
||||
.root;
|
||||
store_root = store.set_node(root, index, value).unwrap().root;
|
||||
black_box(store_root)
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
|
@ -450,12 +452,12 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
|
|||
.enumerate()
|
||||
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
|
||||
.collect::<Vec<(u64, Word)>>();
|
||||
let mut smt = SimpleSmt::new(63)
|
||||
let mut smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
.with_leaves(smt_leaves.clone())
|
||||
.unwrap();
|
||||
let mut store = MerkleStore::new()
|
||||
.with_sparse_merkle_tree(smt_leaves)
|
||||
.with_sparse_merkle_tree(SimpleSmt::MAX_DEPTH, smt_leaves)
|
||||
.unwrap();
|
||||
let depth = smt.depth();
|
||||
let root = smt.root();
|
||||
|
@ -463,7 +465,7 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
|
|||
|
||||
group.bench_function(BenchmarkId::new("SimpleSMT", size), |b| {
|
||||
b.iter_batched(
|
||||
|| (random_index(size_u64), random_word()),
|
||||
|| (rand_value::<u64>() % size_u64, random_word()),
|
||||
|(index, value)| black_box(smt.update_leaf(index, value)),
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
|
@ -472,15 +474,12 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
|
|||
let mut store_root = root;
|
||||
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
|
||||
b.iter_batched(
|
||||
|| (random_index(size_u64), random_word()),
|
||||
|| (random_index(size_u64, depth), random_word()),
|
||||
|(index, value)| {
|
||||
// The MerkleTree automatically updates its internal root, the Store maintains
|
||||
// the old root and adds the new one. Here we update the root to have a fair
|
||||
// comparison
|
||||
store_root = store
|
||||
.set_node(root, NodeIndex::new(depth, index), value)
|
||||
.unwrap()
|
||||
.root;
|
||||
store_root = store.set_node(root, index, value).unwrap().root;
|
||||
black_box(store_root)
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
|
|
169
src/bit.rs
169
src/bit.rs
|
@ -1,169 +0,0 @@
|
|||
/// Yields the bits of a `u64`.
|
||||
pub struct BitIterator {
|
||||
/// The value that is being iterated bit-wise
|
||||
value: u64,
|
||||
/// True bits in the `mask` are the bits that have been visited.
|
||||
mask: u64,
|
||||
}
|
||||
|
||||
impl BitIterator {
|
||||
pub fn new(value: u64) -> BitIterator {
|
||||
BitIterator { value, mask: 0 }
|
||||
}
|
||||
|
||||
/// An efficient skip implementation.
|
||||
///
|
||||
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
|
||||
/// if the code is inlined, however inlining does not always happen.
|
||||
pub fn skip_front(mut self, n: u32) -> Self {
|
||||
let mask = bitmask(n);
|
||||
let ones = self.mask.trailing_ones();
|
||||
let mask_position = ones;
|
||||
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
|
||||
self
|
||||
}
|
||||
|
||||
/// An efficient skip from the back.
|
||||
///
|
||||
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
|
||||
/// if the code is inlined, however inlining does not always happen.
|
||||
pub fn skip_back(mut self, n: u32) -> Self {
|
||||
let mask = bitmask(n);
|
||||
let ones = self.mask.leading_ones();
|
||||
let mask_position = u64::BITS - ones - n;
|
||||
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterator for BitIterator {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
|
||||
// trailing_ones is implemented with trailing_zeros, and the zeros are computed with the
|
||||
// intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf` instruction. AArch64 uses the `rbit
|
||||
// clz` instructions.
|
||||
let ones = self.mask.trailing_ones();
|
||||
|
||||
if ones == u64::BITS {
|
||||
None
|
||||
} else {
|
||||
let bit_position = ones;
|
||||
let mask = 1 << bit_position;
|
||||
self.mask ^= mask;
|
||||
let bit = self.value & mask;
|
||||
Some(bit != 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DoubleEndedIterator for BitIterator {
|
||||
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
|
||||
// leading_ones is implemented with leading_zeros, and the zeros are computed with the
|
||||
// intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr` instruction. AArch64 uses the `clz`
|
||||
// instruction.
|
||||
let ones = self.mask.leading_ones();
|
||||
|
||||
if ones == u64::BITS {
|
||||
None
|
||||
} else {
|
||||
let bit_position = u64::BITS - ones - 1;
|
||||
let mask = 1 << bit_position;
|
||||
self.mask ^= mask;
|
||||
let bit = self.value & mask;
|
||||
Some(bit != 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::BitIterator;
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator() {
|
||||
let v = 0b1;
|
||||
let mut it = BitIterator::new(v);
|
||||
assert!(it.next().unwrap(), "first bit is true");
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
|
||||
let v = 0b10;
|
||||
let mut it = BitIterator::new(v);
|
||||
assert!(!it.next().unwrap(), "first bit is false");
|
||||
assert!(it.next().unwrap(), "first bit is true");
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
|
||||
let v = 0b10;
|
||||
let mut it = BitIterator::new(v);
|
||||
assert!(!it.next_back().unwrap(), "last bit is false");
|
||||
assert!(!it.next().unwrap(), "first bit is false");
|
||||
assert!(it.next().unwrap(), "first bit is true");
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator_skip() {
|
||||
let v = 0b1;
|
||||
let mut it = BitIterator::new(v).skip_front(1);
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
|
||||
let v = 0b10;
|
||||
let mut it = BitIterator::new(v).skip_front(1);
|
||||
assert!(it.next().unwrap(), "first bit is true");
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
|
||||
let high_bit = 0b1 << (u64::BITS - 1);
|
||||
let mut it = BitIterator::new(high_bit).skip_back(1);
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
|
||||
let v = 0b10;
|
||||
let mut it = BitIterator::new(v).skip_back(1);
|
||||
assert!(!it.next_back().unwrap(), "last bit is false");
|
||||
assert!(!it.next().unwrap(), "first bit is false");
|
||||
assert!(it.next().unwrap(), "first bit is true");
|
||||
assert!(it.all(|v| v == false), "every other value is false");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_skip_all() {
|
||||
let v = 0b1;
|
||||
let mut it = BitIterator::new(v).skip_front(u64::BITS);
|
||||
assert!(it.next().is_none(), "iterator must be exhausted");
|
||||
|
||||
let v = 0b1;
|
||||
let mut it = BitIterator::new(v).skip_back(u64::BITS);
|
||||
assert!(it.next().is_none(), "iterator must be exhausted");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator_count_bits_after_skip() {
|
||||
let any_value = 0b1;
|
||||
for s in 0..u64::BITS {
|
||||
let it = BitIterator::new(any_value).skip_front(s);
|
||||
assert_eq!(it.count() as u32, u64::BITS - s)
|
||||
}
|
||||
|
||||
let any_value = 0b1;
|
||||
for s in 1..u64::BITS {
|
||||
let it = BitIterator::new(any_value).skip_back(s);
|
||||
assert_eq!(it.count() as u32, u64::BITS - s)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator_rev() {
|
||||
let v = 0b1;
|
||||
let mut it = BitIterator::new(v).rev();
|
||||
assert!(it.nth(63).unwrap(), "the last value is true");
|
||||
}
|
||||
}
|
||||
|
||||
// UTILITIES
|
||||
// ===============================================================================================
|
||||
|
||||
fn bitmask(s: u32) -> u64 {
|
||||
match 1u64.checked_shl(s) {
|
||||
Some(r) => r - 1,
|
||||
None => u64::MAX,
|
||||
}
|
||||
}
|
|
@ -1,7 +1,5 @@
|
|||
use super::{Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField};
|
||||
use crate::utils::{
|
||||
uninit_vector, ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable,
|
||||
};
|
||||
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
|
||||
use core::{
|
||||
mem::{size_of, transmute, transmute_copy},
|
||||
ops::Deref,
|
||||
|
@ -290,15 +288,25 @@ where
|
|||
let digest = if Felt::IS_CANONICAL {
|
||||
blake3::hash(E::elements_as_bytes(elements))
|
||||
} else {
|
||||
let base_elements = E::slice_as_base_elements(elements);
|
||||
let blen = base_elements.len() << 3;
|
||||
let mut hasher = blake3::Hasher::new();
|
||||
|
||||
let mut bytes = unsafe { uninit_vector(blen) };
|
||||
for (idx, element) in base_elements.iter().enumerate() {
|
||||
bytes[idx * 8..(idx + 1) * 8].copy_from_slice(&element.as_int().to_le_bytes());
|
||||
// BLAKE3 state is 64 bytes - so, we can absorb 64 bytes into the state in a single
|
||||
// permutation. we move the elements into the hasher via the buffer to give the CPU
|
||||
// a chance to process multiple element-to-byte conversions in parallel
|
||||
let mut buf = [0_u8; 64];
|
||||
let mut chunk_iter = E::slice_as_base_elements(elements).chunks_exact(8);
|
||||
for chunk in chunk_iter.by_ref() {
|
||||
for i in 0..8 {
|
||||
buf[i * 8..(i + 1) * 8].copy_from_slice(&chunk[i].as_int().to_le_bytes());
|
||||
}
|
||||
hasher.update(&buf);
|
||||
}
|
||||
|
||||
blake3::hash(&bytes)
|
||||
for element in chunk_iter.remainder() {
|
||||
hasher.update(&element.as_int().to_le_bytes());
|
||||
}
|
||||
|
||||
hasher.finalize()
|
||||
};
|
||||
*shrink_bytes(&digest.into())
|
||||
}
|
||||
|
|
|
@ -1,6 +1,22 @@
|
|||
use super::*;
|
||||
use crate::utils::collections::Vec;
|
||||
use proptest::prelude::*;
|
||||
use rand_utils::rand_vector;
|
||||
|
||||
#[test]
|
||||
fn blake3_hash_elements() {
|
||||
// test multiple of 8
|
||||
let elements = rand_vector::<Felt>(16);
|
||||
let expected = compute_expected_element_hash(&elements);
|
||||
let actual: [u8; 32] = hash_elements(&elements);
|
||||
assert_eq!(&expected, &actual);
|
||||
|
||||
// test not multiple of 8
|
||||
let elements = rand_vector::<Felt>(17);
|
||||
let expected = compute_expected_element_hash(&elements);
|
||||
let actual: [u8; 32] = hash_elements(&elements);
|
||||
assert_eq!(&expected, &actual);
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
|
@ -18,3 +34,14 @@ proptest! {
|
|||
Blake3_256::hash(vec);
|
||||
}
|
||||
}
|
||||
|
||||
// HELPER FUNCTIONS
|
||||
// ================================================================================================
|
||||
|
||||
fn compute_expected_element_hash(elements: &[Felt]) -> blake3::Hash {
|
||||
let mut bytes = Vec::new();
|
||||
for element in elements.iter() {
|
||||
bytes.extend_from_slice(&element.as_int().to_le_bytes());
|
||||
}
|
||||
blake3::hash(&bytes)
|
||||
}
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
#[cfg_attr(test, macro_use)]
|
||||
extern crate alloc;
|
||||
|
||||
mod bit;
|
||||
pub mod hash;
|
||||
pub mod merkle;
|
||||
pub mod utils;
|
||||
|
|
|
@ -1,13 +1,23 @@
|
|||
use super::{Felt, MerkleError, RpoDigest, StarkField};
|
||||
use crate::bit::BitIterator;
|
||||
|
||||
// NODE INDEX
|
||||
// ================================================================================================
|
||||
|
||||
/// A Merkle tree address to an arbitrary node.
|
||||
/// Address to an arbitrary node in a binary tree using level order form.
|
||||
///
|
||||
/// The position is relative to a tree in level order, where for a given depth `d` elements are
|
||||
/// numbered from $0..2^d$.
|
||||
/// The position is represented by the pair `(depth, pos)`, where for a given depth `d` elements
|
||||
/// are numbered from $0..(2^d)-1$. Example:
|
||||
///
|
||||
/// ```ignore
|
||||
/// depth
|
||||
/// 0 0
|
||||
/// 1 0 1
|
||||
/// 2 0 1 2 3
|
||||
/// 3 0 1 2 3 4 5 6 7
|
||||
/// ```
|
||||
///
|
||||
/// The root is represented by the pair $(0, 0)$, its left child is $(1, 0)$ and its right child
|
||||
/// $(1, 1)$.
|
||||
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
|
||||
pub struct NodeIndex {
|
||||
depth: u8,
|
||||
|
@ -19,20 +29,37 @@ impl NodeIndex {
|
|||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Creates a new node index.
|
||||
pub const fn new(depth: u8, value: u64) -> Self {
|
||||
Self { depth, value }
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the `value` is greater than or equal to 2^{depth}.
|
||||
pub const fn new(depth: u8, value: u64) -> Result<Self, MerkleError> {
|
||||
if (64 - value.leading_zeros()) > depth as u32 {
|
||||
Err(MerkleError::InvalidIndex { depth, value })
|
||||
} else {
|
||||
Ok(Self { depth, value })
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new node index for testing purposes.
|
||||
///
|
||||
/// # Panics
|
||||
/// Panics if the `value` is greater than or equal to 2^{depth}.
|
||||
#[cfg(test)]
|
||||
pub fn make(depth: u8, value: u64) -> Self {
|
||||
Self::new(depth, value).unwrap()
|
||||
}
|
||||
|
||||
/// Creates a node index from a pair of field elements representing the depth and value.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Will error if the `u64` representation of the depth doesn't fit a `u8`.
|
||||
/// Returns an error if:
|
||||
/// - `depth` doesn't fit in a `u8`.
|
||||
/// - `value` is greater than or equal to 2^{depth}.
|
||||
pub fn from_elements(depth: &Felt, value: &Felt) -> Result<Self, MerkleError> {
|
||||
let depth = depth.as_int();
|
||||
let depth = u8::try_from(depth).map_err(|_| MerkleError::DepthTooBig(depth))?;
|
||||
let value = value.as_int();
|
||||
Ok(Self::new(depth, value))
|
||||
Self::new(depth, value)
|
||||
}
|
||||
|
||||
/// Creates a new node index pointing to the root of the tree.
|
||||
|
@ -40,12 +67,6 @@ impl NodeIndex {
|
|||
Self { depth: 0, value: 0 }
|
||||
}
|
||||
|
||||
/// Mutates the instance and returns it, replacing the depth.
|
||||
pub const fn with_depth(mut self, depth: u8) -> Self {
|
||||
self.depth = depth;
|
||||
self
|
||||
}
|
||||
|
||||
/// Computes the value of the sibling of the current node.
|
||||
pub fn sibling(mut self) -> Self {
|
||||
self.value ^= 1;
|
||||
|
@ -83,11 +104,6 @@ impl NodeIndex {
|
|||
self.value
|
||||
}
|
||||
|
||||
/// Returns true if the current value fits the current depth for a binary tree.
|
||||
pub const fn is_valid(&self) -> bool {
|
||||
self.value < (1 << self.depth as u64)
|
||||
}
|
||||
|
||||
/// Returns true if the current instance points to a right sibling node.
|
||||
pub const fn is_value_odd(&self) -> bool {
|
||||
(self.value & 1) == 1
|
||||
|
@ -98,19 +114,6 @@ impl NodeIndex {
|
|||
self.depth == 0
|
||||
}
|
||||
|
||||
/// Returns a bit iterator for the `value`.
|
||||
///
|
||||
/// Bits read from left-to-right represent which internal node's child should be visited to
|
||||
/// arrive at the leaf. From the right-to-left the bit represent the position the hash of the
|
||||
/// current element should go.
|
||||
///
|
||||
/// Additionally, the value that is not visited are the sibling values necessary for a Merkle
|
||||
/// opening.
|
||||
pub fn bit_iterator(&self) -> BitIterator {
|
||||
let depth: u32 = self.depth.into();
|
||||
BitIterator::new(self.value).skip_back(u64::BITS - depth)
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -127,14 +130,43 @@ mod tests {
|
|||
use super::*;
|
||||
use proptest::prelude::*;
|
||||
|
||||
#[test]
|
||||
fn test_node_index_value_too_high() {
|
||||
assert_eq!(
|
||||
NodeIndex::new(0, 0).unwrap(),
|
||||
NodeIndex { depth: 0, value: 0 }
|
||||
);
|
||||
match NodeIndex::new(0, 1) {
|
||||
Err(MerkleError::InvalidIndex { depth, value }) => {
|
||||
assert_eq!(depth, 0);
|
||||
assert_eq!(value, 1);
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_node_index_can_represent_depth_64() {
|
||||
assert!(NodeIndex::new(64, u64::MAX).is_ok());
|
||||
}
|
||||
|
||||
prop_compose! {
|
||||
fn node_index()(value in 0..2u64.pow(u64::BITS - 1)) -> NodeIndex {
|
||||
// unwrap never panics because the range of depth is 0..u64::BITS
|
||||
let mut depth = value.ilog2() as u8;
|
||||
if value > (1 << depth) { // round up
|
||||
depth += 1;
|
||||
}
|
||||
NodeIndex::new(depth, value.into()).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn arbitrary_index_wont_panic_on_move_up(
|
||||
depth in prop::num::u8::ANY,
|
||||
value in prop::num::u64::ANY,
|
||||
mut index in node_index(),
|
||||
count in prop::num::u8::ANY,
|
||||
) {
|
||||
let mut index = NodeIndex::new(depth, value);
|
||||
for _ in 0..count {
|
||||
index.move_up();
|
||||
}
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
use super::{Felt, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
|
||||
use super::{
|
||||
Felt, InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
|
||||
};
|
||||
use crate::{
|
||||
utils::{string::String, uninit_vector, word_to_hex},
|
||||
FieldElement,
|
||||
|
@ -12,7 +14,7 @@ use winter_math::log2;
|
|||
/// A fully-balanced binary Merkle tree (i.e., a tree where the number of leaves is a power of two).
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct MerkleTree {
|
||||
pub(crate) nodes: Vec<Word>,
|
||||
nodes: Vec<Word>,
|
||||
}
|
||||
|
||||
impl MerkleTree {
|
||||
|
@ -77,8 +79,6 @@ impl MerkleTree {
|
|||
return Err(MerkleError::DepthTooSmall(index.depth()));
|
||||
} else if index.depth() > self.depth() {
|
||||
return Err(MerkleError::DepthTooBig(index.depth() as u64));
|
||||
} else if !index.is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(index));
|
||||
}
|
||||
|
||||
let pos = index.to_scalar_index() as usize;
|
||||
|
@ -97,8 +97,6 @@ impl MerkleTree {
|
|||
return Err(MerkleError::DepthTooSmall(index.depth()));
|
||||
} else if index.depth() > self.depth() {
|
||||
return Err(MerkleError::DepthTooBig(index.depth() as u64));
|
||||
} else if !index.is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(index));
|
||||
}
|
||||
|
||||
// TODO should we create a helper in `NodeIndex` that will encapsulate traversal to root so
|
||||
|
@ -124,11 +122,7 @@ impl MerkleTree {
|
|||
/// # Errors
|
||||
/// Returns an error if the specified index value is not a valid leaf value for this tree.
|
||||
pub fn update_leaf<'a>(&'a mut self, index_value: u64, value: Word) -> Result<(), MerkleError> {
|
||||
let depth = self.depth();
|
||||
let mut index = NodeIndex::new(depth, index_value);
|
||||
if !index.is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(index));
|
||||
}
|
||||
let mut index = NodeIndex::new(self.depth(), index_value)?;
|
||||
|
||||
// we don't need to copy the pairs into a new address as we are logically guaranteed to not
|
||||
// overlap write instructions. however, it's important to bind the lifetime of pairs to
|
||||
|
@ -158,9 +152,50 @@ impl MerkleTree {
|
|||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// An iterator over every inner node in the tree. The iterator order is unspecified.
|
||||
pub fn inner_nodes(&self) -> MerkleTreeNodes<'_> {
|
||||
MerkleTreeNodes {
|
||||
nodes: &self.nodes,
|
||||
index: 1, // index 0 is just padding, start at 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Utility to vizualize a [MerkleTree] in text.
|
||||
// ITERATORS
|
||||
// ================================================================================================
|
||||
|
||||
/// An iterator over every inner node of the [MerkleTree].
|
||||
///
|
||||
/// Use this to extract the data of the tree, there is no guarantee on the order of the elements.
|
||||
pub struct MerkleTreeNodes<'a> {
|
||||
nodes: &'a Vec<Word>,
|
||||
index: usize,
|
||||
}
|
||||
|
||||
impl<'a> Iterator for MerkleTreeNodes<'a> {
|
||||
type Item = InnerNodeInfo;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.index < self.nodes.len() / 2 {
|
||||
let value = self.index;
|
||||
let left = self.index * 2;
|
||||
let right = left + 1;
|
||||
|
||||
self.index += 1;
|
||||
|
||||
Some(InnerNodeInfo {
|
||||
value: self.nodes[value],
|
||||
left: self.nodes[left],
|
||||
right: self.nodes[right],
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Utility to visualize a [MerkleTree] in text.
|
||||
pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
|
||||
let indent = " ";
|
||||
let mut s = String::new();
|
||||
|
@ -169,11 +204,8 @@ pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
|
|||
for d in 1..=tree.depth() {
|
||||
let entries = 2u64.pow(d.into());
|
||||
for i in 0..entries {
|
||||
let index = NodeIndex::new(d, i);
|
||||
|
||||
let node = tree
|
||||
.get_node(index)
|
||||
.expect("The index must always be valid");
|
||||
let index = NodeIndex::new(d, i).expect("The index must always be valid");
|
||||
let node = tree.get_node(index).expect("The node must always be found");
|
||||
|
||||
for _ in 0..d {
|
||||
s.push_str(indent);
|
||||
|
@ -186,7 +218,7 @@ pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
|
|||
Ok(s)
|
||||
}
|
||||
|
||||
/// Utility to vizualize a [MerklePath] in text.
|
||||
/// Utility to visualize a [MerklePath] in text.
|
||||
pub fn path_to_text(path: &MerklePath) -> Result<String, fmt::Error> {
|
||||
let mut s = String::new();
|
||||
s.push('[');
|
||||
|
@ -212,7 +244,7 @@ pub fn path_to_text(path: &MerklePath) -> Result<String, fmt::Error> {
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::merkle::int_to_node;
|
||||
use crate::merkle::{int_to_node, InnerNodeInfo};
|
||||
use core::mem::size_of;
|
||||
use proptest::prelude::*;
|
||||
|
||||
|
@ -258,16 +290,16 @@ mod tests {
|
|||
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
|
||||
|
||||
// check depth 2
|
||||
assert_eq!(LEAVES4[0], tree.get_node(NodeIndex::new(2, 0)).unwrap());
|
||||
assert_eq!(LEAVES4[1], tree.get_node(NodeIndex::new(2, 1)).unwrap());
|
||||
assert_eq!(LEAVES4[2], tree.get_node(NodeIndex::new(2, 2)).unwrap());
|
||||
assert_eq!(LEAVES4[3], tree.get_node(NodeIndex::new(2, 3)).unwrap());
|
||||
assert_eq!(LEAVES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
|
||||
assert_eq!(LEAVES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
|
||||
assert_eq!(LEAVES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
|
||||
assert_eq!(LEAVES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
|
||||
|
||||
// check depth 1
|
||||
let (_, node2, node3) = compute_internal_nodes();
|
||||
|
||||
assert_eq!(node2, tree.get_node(NodeIndex::new(1, 0)).unwrap());
|
||||
assert_eq!(node3, tree.get_node(NodeIndex::new(1, 1)).unwrap());
|
||||
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -279,24 +311,24 @@ mod tests {
|
|||
// check depth 2
|
||||
assert_eq!(
|
||||
vec![LEAVES4[1], node3],
|
||||
*tree.get_path(NodeIndex::new(2, 0)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 0)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![LEAVES4[0], node3],
|
||||
*tree.get_path(NodeIndex::new(2, 1)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 1)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![LEAVES4[3], node2],
|
||||
*tree.get_path(NodeIndex::new(2, 2)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 2)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![LEAVES4[2], node2],
|
||||
*tree.get_path(NodeIndex::new(2, 3)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 3)).unwrap()
|
||||
);
|
||||
|
||||
// check depth 1
|
||||
assert_eq!(vec![node3], *tree.get_path(NodeIndex::new(1, 0)).unwrap());
|
||||
assert_eq!(vec![node2], *tree.get_path(NodeIndex::new(1, 1)).unwrap());
|
||||
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -323,6 +355,40 @@ mod tests {
|
|||
assert_eq!(expected_tree.nodes, tree.nodes);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn nodes() -> Result<(), MerkleError> {
|
||||
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
|
||||
let root = tree.root();
|
||||
let l1n0 = tree.get_node(NodeIndex::make(1, 0))?;
|
||||
let l1n1 = tree.get_node(NodeIndex::make(1, 1))?;
|
||||
let l2n0 = tree.get_node(NodeIndex::make(2, 0))?;
|
||||
let l2n1 = tree.get_node(NodeIndex::make(2, 1))?;
|
||||
let l2n2 = tree.get_node(NodeIndex::make(2, 2))?;
|
||||
let l2n3 = tree.get_node(NodeIndex::make(2, 3))?;
|
||||
|
||||
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
|
||||
let expected = vec![
|
||||
InnerNodeInfo {
|
||||
value: root,
|
||||
left: l1n0,
|
||||
right: l1n1,
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: l1n0,
|
||||
left: l2n0,
|
||||
right: l2n1,
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: l1n1,
|
||||
left: l2n2,
|
||||
right: l2n3,
|
||||
},
|
||||
];
|
||||
assert_eq!(nodes, expected);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn arbitrary_word_can_be_represented_as_digest(
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
use super::{super::Vec, MmrProof, Rpo256, Word};
|
||||
use super::{
|
||||
super::Vec,
|
||||
super::{WORD_SIZE, ZERO},
|
||||
MmrProof, Rpo256, Word,
|
||||
};
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct MmrPeaks {
|
||||
|
@ -8,18 +12,17 @@ pub struct MmrPeaks {
|
|||
/// the MMR has a power-of-two number of leaves there is a single peak.
|
||||
///
|
||||
/// Every tree in the MMR forest has a distinct power-of-two size, this means only the right
|
||||
/// most tree can have an odd number of elements (1). Additionally this means that the bits in
|
||||
/// most tree can have an odd number of elements (e.g. `1`). Additionally this means that the bits in
|
||||
/// `num_leaves` conveniently encode the size of each individual tree.
|
||||
///
|
||||
/// Examples:
|
||||
///
|
||||
/// Example 1: With 5 leaves, the binary 0b101. The number of set bits is equal the number
|
||||
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
|
||||
/// the bit determines the number of elements of a tree, so the rightmost tree has 2**0
|
||||
/// elements and the left most has 2**2.
|
||||
///
|
||||
/// Example 2: With 12 leaves, the binary is 0b1100, this case also has 2 peaks, the
|
||||
/// leftmost tree has 2**3=8 elements, and the right most has 2**2=4 elements.
|
||||
/// - With 5 leaves, the binary `0b101`. The number of set bits is equal the number
|
||||
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
|
||||
/// the bit determines the number of elements of a tree, so the rightmost tree has `2**0`
|
||||
/// elements and the left most has `2**2`.
|
||||
/// - With 12 leaves, the binary is `0b1100`, this case also has 2 peaks, the
|
||||
/// leftmost tree has `2**3=8` elements, and the right most has `2**2=4` elements.
|
||||
pub num_leaves: usize,
|
||||
|
||||
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
|
||||
|
@ -30,9 +33,23 @@ pub struct MmrPeaks {
|
|||
}
|
||||
|
||||
impl MmrPeaks {
|
||||
/// Hashes the peaks sequentially, compacting it to a single digest
|
||||
/// Hashes the peaks.
|
||||
///
|
||||
/// The hashing is optimized to work with the Miden VM, the procedure will:
|
||||
///
|
||||
/// - Pad the peaks with ZERO to an even number of words, this removes the need to handle RPO padding.
|
||||
/// - Pad the peaks to a minimum length of 16 words, which reduces the constant cost of
|
||||
/// hashing.
|
||||
pub fn hash_peaks(&self) -> Word {
|
||||
Rpo256::hash_elements(&self.peaks.as_slice().concat()).into()
|
||||
let mut copy = self.peaks.clone();
|
||||
|
||||
if copy.len() < 16 {
|
||||
copy.resize(16, [ZERO; WORD_SIZE])
|
||||
} else if copy.len() % 2 == 1 {
|
||||
copy.push([ZERO; WORD_SIZE])
|
||||
}
|
||||
|
||||
Rpo256::hash_elements(©.as_slice().concat()).into()
|
||||
}
|
||||
|
||||
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
|
||||
|
|
|
@ -11,8 +11,10 @@
|
|||
//! merged, creating a new tree with depth d+1, this process is continued until the property is
|
||||
//! restabilished.
|
||||
use super::bit::TrueBitPositionIterator;
|
||||
use super::{super::Vec, MmrPeaks, MmrProof, Rpo256, Word};
|
||||
use crate::merkle::MerklePath;
|
||||
use super::{
|
||||
super::{InnerNodeInfo, MerklePath, Vec},
|
||||
MmrPeaks, MmrProof, Rpo256, Word,
|
||||
};
|
||||
use core::fmt::{Display, Formatter};
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
|
@ -172,7 +174,7 @@ impl Mmr {
|
|||
self.forest += 1;
|
||||
}
|
||||
|
||||
/// Returns an accumulator representing the current state of the MMMR.
|
||||
/// Returns an accumulator representing the current state of the MMR.
|
||||
pub fn accumulator(&self) -> MmrPeaks {
|
||||
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
|
||||
.rev()
|
||||
|
@ -190,6 +192,16 @@ impl Mmr {
|
|||
}
|
||||
}
|
||||
|
||||
/// An iterator over inner nodes in the MMR. The order of iteration is unspecified.
|
||||
pub fn inner_nodes(&self) -> MmrNodes {
|
||||
MmrNodes {
|
||||
mmr: self,
|
||||
forest: 0,
|
||||
last_right: 0,
|
||||
index: 0,
|
||||
}
|
||||
}
|
||||
|
||||
// UTILITIES
|
||||
// ============================================================================================
|
||||
|
||||
|
@ -246,6 +258,87 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
// ITERATOR
|
||||
// ===============================================================================================
|
||||
|
||||
/// Yields inner nodes of the [Mmr].
|
||||
pub struct MmrNodes<'a> {
|
||||
/// [Mmr] being yielded, when its `forest` value is matched, the iterations is finished.
|
||||
mmr: &'a Mmr,
|
||||
/// Keeps track of the left nodes yielded so far waiting for a right pair, this matches the
|
||||
/// semantics of the [Mmr]'s forest attribute, since that too works as a buffer of left nodes
|
||||
/// waiting for a pair to be hashed together.
|
||||
forest: usize,
|
||||
/// Keeps track of the last right node yielded, after this value is set, the next iteration
|
||||
/// will be its parent with its corresponding left node that has been yield already.
|
||||
last_right: usize,
|
||||
/// The current index in the `nodes` vector.
|
||||
index: usize,
|
||||
}
|
||||
|
||||
impl<'a> Iterator for MmrNodes<'a> {
|
||||
type Item = InnerNodeInfo;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
debug_assert!(
|
||||
self.last_right.count_ones() <= 1,
|
||||
"last_right tracks zero or one element"
|
||||
);
|
||||
|
||||
// only parent nodes are emitted, remove the single node tree from the forest
|
||||
let target = self.mmr.forest & (usize::MAX << 1);
|
||||
|
||||
if self.forest < target {
|
||||
if self.last_right == 0 {
|
||||
// yield the left leaf
|
||||
debug_assert!(self.last_right == 0, "left must be before right");
|
||||
self.forest |= 1;
|
||||
self.index += 1;
|
||||
|
||||
// yield the right leaf
|
||||
debug_assert!((self.forest & 1) == 1, "right must be after left");
|
||||
self.last_right |= 1;
|
||||
self.index += 1;
|
||||
};
|
||||
|
||||
debug_assert!(
|
||||
self.forest & self.last_right != 0,
|
||||
"parent requires both a left and right",
|
||||
);
|
||||
|
||||
// compute the number of nodes in the right tree, this is the offset to the
|
||||
// previous left parent
|
||||
let right_nodes = nodes_in_forest(self.last_right);
|
||||
// the next parent position is one above the position of the pair
|
||||
let parent = self.last_right << 1;
|
||||
|
||||
// the left node has been paired and the current parent yielded, removed it from the forest
|
||||
self.forest ^= self.last_right;
|
||||
if self.forest & parent == 0 {
|
||||
// this iteration yielded the left parent node
|
||||
debug_assert!(self.forest & 1 == 0, "next iteration yields a left leaf");
|
||||
self.last_right = 0;
|
||||
self.forest ^= parent;
|
||||
} else {
|
||||
// the left node of the parent level has been yielded already, this iteration
|
||||
// was the right parent. Next iteration yields their parent.
|
||||
self.last_right = parent;
|
||||
}
|
||||
|
||||
// yields a parent
|
||||
let value = self.mmr.nodes[self.index];
|
||||
let right = self.mmr.nodes[self.index - 1];
|
||||
let left = self.mmr.nodes[self.index - 1 - right_nodes];
|
||||
self.index += 1;
|
||||
let node = InnerNodeInfo { value, left, right };
|
||||
|
||||
Some(node)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// UTILITIES
|
||||
// ===============================================================================================
|
||||
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
use super::bit::TrueBitPositionIterator;
|
||||
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
|
||||
use super::{super::Vec, Mmr, Rpo256, Word};
|
||||
use super::{
|
||||
super::{InnerNodeInfo, Vec, WORD_SIZE, ZERO},
|
||||
Mmr, MmrPeaks, Rpo256, Word,
|
||||
};
|
||||
use crate::merkle::{int_to_node, MerklePath};
|
||||
|
||||
#[test]
|
||||
|
@ -410,6 +413,101 @@ fn test_bit_position_iterator() {
|
|||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mmr_inner_nodes() {
|
||||
let mmr: Mmr = LEAVES.into();
|
||||
let nodes: Vec<InnerNodeInfo> = mmr.inner_nodes().collect();
|
||||
|
||||
let h01 = *Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat());
|
||||
let h23 = *Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat());
|
||||
let h0123 = *Rpo256::hash_elements(&[h01, h23].concat());
|
||||
let h45 = *Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat());
|
||||
let postorder = vec![
|
||||
InnerNodeInfo {
|
||||
value: h01,
|
||||
left: LEAVES[0],
|
||||
right: LEAVES[1],
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: h23,
|
||||
left: LEAVES[2],
|
||||
right: LEAVES[3],
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: h0123,
|
||||
left: h01,
|
||||
right: h23,
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: h45,
|
||||
left: LEAVES[4],
|
||||
right: LEAVES[5],
|
||||
},
|
||||
];
|
||||
|
||||
assert_eq!(postorder, nodes);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mmr_hash_peaks() {
|
||||
let mmr: Mmr = LEAVES.into();
|
||||
let peaks = mmr.accumulator();
|
||||
|
||||
let first_peak = *Rpo256::merge(&[
|
||||
Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()),
|
||||
Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()),
|
||||
]);
|
||||
let second_peak = *Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat());
|
||||
let third_peak = LEAVES[6];
|
||||
|
||||
// minimum length is 16
|
||||
let mut expected_peaks = [first_peak, second_peak, third_peak].to_vec();
|
||||
expected_peaks.resize(16, [ZERO; WORD_SIZE]);
|
||||
assert_eq!(
|
||||
peaks.hash_peaks(),
|
||||
*Rpo256::hash_elements(&expected_peaks.as_slice().concat())
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mmr_peaks_hash_less_than_16() {
|
||||
let mut peaks = Vec::new();
|
||||
|
||||
for i in 0..16 {
|
||||
peaks.push(int_to_node(i));
|
||||
let accumulator = MmrPeaks {
|
||||
num_leaves: (1 << peaks.len()) - 1,
|
||||
peaks: peaks.clone(),
|
||||
};
|
||||
|
||||
// minimum length is 16
|
||||
let mut expected_peaks = peaks.clone();
|
||||
expected_peaks.resize(16, [ZERO; WORD_SIZE]);
|
||||
assert_eq!(
|
||||
accumulator.hash_peaks(),
|
||||
*Rpo256::hash_elements(&expected_peaks.as_slice().concat())
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mmr_peaks_hash_odd() {
|
||||
let peaks: Vec<_> = (0..=17).map(|i| int_to_node(i)).collect();
|
||||
|
||||
let accumulator = MmrPeaks {
|
||||
num_leaves: (1 << peaks.len()) - 1,
|
||||
peaks: peaks.clone(),
|
||||
};
|
||||
|
||||
// odd length bigger than 16 is padded to the next even nubmer
|
||||
let mut expected_peaks = peaks.clone();
|
||||
expected_peaks.resize(18, [ZERO; WORD_SIZE]);
|
||||
assert_eq!(
|
||||
accumulator.hash_peaks(),
|
||||
*Rpo256::hash_elements(&expected_peaks.as_slice().concat())
|
||||
);
|
||||
}
|
||||
|
||||
mod property_tests {
|
||||
use super::leaf_to_corresponding_tree;
|
||||
use proptest::prelude::*;
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use super::{
|
||||
hash::rpo::{Rpo256, RpoDigest},
|
||||
utils::collections::{vec, BTreeMap, BTreeSet, Vec},
|
||||
utils::collections::{vec, BTreeMap, Vec},
|
||||
Felt, StarkField, Word, WORD_SIZE, ZERO,
|
||||
};
|
||||
use core::fmt;
|
||||
|
@ -32,6 +32,9 @@ pub use mmr::{Mmr, MmrPeaks};
|
|||
mod store;
|
||||
pub use store::MerkleStore;
|
||||
|
||||
mod node;
|
||||
pub use node::InnerNodeInfo;
|
||||
|
||||
// ERRORS
|
||||
// ================================================================================================
|
||||
|
||||
|
@ -42,7 +45,7 @@ pub enum MerkleError {
|
|||
DepthTooBig(u64),
|
||||
NodeNotInStore(Word, NodeIndex),
|
||||
NumLeavesNotPowerOfTwo(usize),
|
||||
InvalidIndex(NodeIndex),
|
||||
InvalidIndex { depth: u8, value: u64 },
|
||||
InvalidDepth { expected: u8, provided: u8 },
|
||||
InvalidPath(MerklePath),
|
||||
InvalidEntriesCount(usize, usize),
|
||||
|
@ -60,9 +63,9 @@ impl fmt::Display for MerkleError {
|
|||
NumLeavesNotPowerOfTwo(leaves) => {
|
||||
write!(f, "the leaves count {leaves} is not a power of 2")
|
||||
}
|
||||
InvalidIndex(index) => write!(
|
||||
InvalidIndex{ depth, value} => write!(
|
||||
f,
|
||||
"the index value {} is not valid for the depth {}", index.value(), index.depth()
|
||||
"the index value {value} is not valid for the depth {depth}"
|
||||
),
|
||||
InvalidDepth { expected, provided } => write!(
|
||||
f,
|
||||
|
|
9
src/merkle/node.rs
Normal file
9
src/merkle/node.rs
Normal file
|
@ -0,0 +1,9 @@
|
|||
use super::Word;
|
||||
|
||||
/// Representation of a node with two children used for iterating over containers.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct InnerNodeInfo {
|
||||
pub value: Word,
|
||||
pub left: Word,
|
||||
pub right: Word,
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
use super::{vec, NodeIndex, Rpo256, Vec, Word};
|
||||
use super::{vec, MerkleError, NodeIndex, Rpo256, Vec, Word};
|
||||
use core::ops::{Deref, DerefMut};
|
||||
|
||||
// MERKLE PATH
|
||||
|
@ -23,14 +23,15 @@ impl MerklePath {
|
|||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Computes the merkle root for this opening.
|
||||
pub fn compute_root(&self, index_value: u64, node: Word) -> Word {
|
||||
let mut index = NodeIndex::new(self.depth(), index_value);
|
||||
self.nodes.iter().copied().fold(node, |node, sibling| {
|
||||
pub fn compute_root(&self, index: u64, node: Word) -> Result<Word, MerkleError> {
|
||||
let mut index = NodeIndex::new(self.depth(), index)?;
|
||||
let root = self.nodes.iter().copied().fold(node, |node, sibling| {
|
||||
// compute the node and move to the next iteration.
|
||||
let input = index.build_node(node.into(), sibling.into());
|
||||
index.move_up();
|
||||
Rpo256::merge(&input).into()
|
||||
})
|
||||
});
|
||||
Ok(root)
|
||||
}
|
||||
|
||||
/// Returns the depth in which this Merkle path proof is valid.
|
||||
|
@ -42,7 +43,10 @@ impl MerklePath {
|
|||
///
|
||||
/// Returns `true` if `node` exists at `index` in a Merkle tree with `root`.
|
||||
pub fn verify(&self, index: u64, node: Word, root: &Word) -> bool {
|
||||
root == &self.compute_root(index, node)
|
||||
match self.compute_root(index, node) {
|
||||
Ok(computed_root) => root == &computed_root,
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -64,11 +64,6 @@ impl MerklePathSet {
|
|||
/// * The specified index is not valid for the depth of structure.
|
||||
/// * Requested node does not exist in the set.
|
||||
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
|
||||
if !index.with_depth(self.total_depth).is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(
|
||||
index.with_depth(self.total_depth),
|
||||
));
|
||||
}
|
||||
if index.depth() != self.total_depth {
|
||||
return Err(MerkleError::InvalidDepth {
|
||||
expected: self.total_depth,
|
||||
|
@ -90,7 +85,8 @@ impl MerklePathSet {
|
|||
/// * The specified index is not valid for the depth of the structure.
|
||||
/// * Leaf with the requested path does not exist in the set.
|
||||
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
|
||||
self.get_node(NodeIndex::new(self.depth(), index))
|
||||
let index = NodeIndex::new(self.depth(), index)?;
|
||||
self.get_node(index)
|
||||
}
|
||||
|
||||
/// Returns a Merkle path to the node at the specified index. The node itself is
|
||||
|
@ -101,9 +97,6 @@ impl MerklePathSet {
|
|||
/// * The specified index is not valid for the depth of structure.
|
||||
/// * Node of the requested path does not exist in the set.
|
||||
pub fn get_path(&self, index: NodeIndex) -> Result<MerklePath, MerkleError> {
|
||||
if !index.with_depth(self.total_depth).is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(index));
|
||||
}
|
||||
if index.depth() != self.total_depth {
|
||||
return Err(MerkleError::InvalidDepth {
|
||||
expected: self.total_depth,
|
||||
|
@ -165,8 +158,7 @@ impl MerklePathSet {
|
|||
value: Word,
|
||||
mut path: MerklePath,
|
||||
) -> Result<(), MerkleError> {
|
||||
let depth = path.len() as u8;
|
||||
let mut index = NodeIndex::new(depth, index_value);
|
||||
let mut index = NodeIndex::new(path.len() as u8, index_value)?;
|
||||
if index.depth() != self.total_depth {
|
||||
return Err(MerkleError::InvalidDepth {
|
||||
expected: self.total_depth,
|
||||
|
@ -190,7 +182,7 @@ impl MerklePathSet {
|
|||
if self.root == [ZERO; 4] {
|
||||
self.root = root;
|
||||
} else if self.root != root {
|
||||
return Err(MerkleError::InvalidPath(path));
|
||||
return Err(MerkleError::ConflictingRoots([self.root, root].to_vec()));
|
||||
}
|
||||
|
||||
// finish updating the path
|
||||
|
@ -205,12 +197,7 @@ impl MerklePathSet {
|
|||
/// Returns an error if:
|
||||
/// * Requested node does not exist in the set.
|
||||
pub fn update_leaf(&mut self, base_index_value: u64, value: Word) -> Result<(), MerkleError> {
|
||||
let depth = self.depth();
|
||||
let mut index = NodeIndex::new(depth, base_index_value);
|
||||
if !index.is_valid() {
|
||||
return Err(MerkleError::InvalidIndex(index));
|
||||
}
|
||||
|
||||
let mut index = NodeIndex::new(self.depth(), base_index_value)?;
|
||||
let parity = index.value() & 1;
|
||||
let path_key = index.value() - parity;
|
||||
let path = match self.paths.get_mut(&path_key) {
|
||||
|
@ -293,10 +280,9 @@ mod tests {
|
|||
let set = super::MerklePathSet::new(depth)
|
||||
.with_paths([(index, hash_6, path_6.clone().into())])
|
||||
.unwrap();
|
||||
let stored_path_6 = set.get_path(NodeIndex::new(depth, index)).unwrap();
|
||||
let stored_path_6 = set.get_path(NodeIndex::make(depth, index)).unwrap();
|
||||
|
||||
assert_eq!(path_6, *stored_path_6);
|
||||
assert!(set.get_path(NodeIndex::new(depth, 15_u64)).is_err())
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -311,9 +297,8 @@ mod tests {
|
|||
|
||||
assert_eq!(
|
||||
int_to_node(6u64),
|
||||
set.get_node(NodeIndex::new(depth, index)).unwrap()
|
||||
set.get_node(NodeIndex::make(depth, index)).unwrap()
|
||||
);
|
||||
assert!(set.get_node(NodeIndex::new(depth, 15_u64)).is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -347,13 +332,13 @@ mod tests {
|
|||
let new_hash_5 = int_to_node(55);
|
||||
|
||||
set.update_leaf(index_6, new_hash_6).unwrap();
|
||||
let new_path_4 = set.get_path(NodeIndex::new(depth, index_4)).unwrap();
|
||||
let new_path_4 = set.get_path(NodeIndex::make(depth, index_4)).unwrap();
|
||||
let new_hash_67 = calculate_parent_hash(new_hash_6, 14_u64, hash_7);
|
||||
assert_eq!(new_hash_67, new_path_4[1]);
|
||||
|
||||
set.update_leaf(index_5, new_hash_5).unwrap();
|
||||
let new_path_4 = set.get_path(NodeIndex::new(depth, index_4)).unwrap();
|
||||
let new_path_6 = set.get_path(NodeIndex::new(depth, index_6)).unwrap();
|
||||
let new_path_4 = set.get_path(NodeIndex::make(depth, index_4)).unwrap();
|
||||
let new_path_6 = set.get_path(NodeIndex::make(depth, index_6)).unwrap();
|
||||
let new_hash_45 = calculate_parent_hash(new_hash_5, 13_u64, hash_4);
|
||||
assert_eq!(new_hash_45, new_path_6[1]);
|
||||
assert_eq!(new_hash_5, new_path_4[0]);
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
use super::{
|
||||
BTreeMap, EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
|
||||
BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256,
|
||||
RpoDigest, Vec, Word,
|
||||
};
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -8,14 +9,27 @@ mod tests;
|
|||
// SPARSE MERKLE TREE
|
||||
// ================================================================================================
|
||||
|
||||
/// A sparse Merkle tree with 63-bit keys and 4-element leaf values, without compaction.
|
||||
/// Manipulation and retrieval of leaves and internal nodes is provided by its internal `Store`.
|
||||
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
|
||||
/// The root of the tree is recomputed on each new leaf update.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct SimpleSmt {
|
||||
root: Word,
|
||||
depth: u8,
|
||||
pub(crate) store: Store,
|
||||
root: Word,
|
||||
leaves: BTreeMap<u64, Word>,
|
||||
branches: BTreeMap<NodeIndex, BranchNode>,
|
||||
empty_hashes: Vec<RpoDigest>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq)]
|
||||
struct BranchNode {
|
||||
left: RpoDigest,
|
||||
right: RpoDigest,
|
||||
}
|
||||
|
||||
impl BranchNode {
|
||||
fn parent(&self) -> RpoDigest {
|
||||
Rpo256::merge(&[self.left, self.right])
|
||||
}
|
||||
}
|
||||
|
||||
impl SimpleSmt {
|
||||
|
@ -26,7 +40,7 @@ impl SimpleSmt {
|
|||
pub const MIN_DEPTH: u8 = 1;
|
||||
|
||||
/// Maximum supported depth.
|
||||
pub const MAX_DEPTH: u8 = 63;
|
||||
pub const MAX_DEPTH: u8 = 64;
|
||||
|
||||
// CONSTRUCTORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
@ -40,8 +54,16 @@ impl SimpleSmt {
|
|||
return Err(MerkleError::DepthTooBig(depth as u64));
|
||||
}
|
||||
|
||||
let (store, root) = Store::new(depth);
|
||||
Ok(Self { root, depth, store })
|
||||
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
|
||||
let root = empty_hashes[0].into();
|
||||
|
||||
Ok(Self {
|
||||
root,
|
||||
depth,
|
||||
empty_hashes,
|
||||
leaves: BTreeMap::new(),
|
||||
branches: BTreeMap::new(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Appends the provided entries as leaves of the tree.
|
||||
|
@ -57,7 +79,7 @@ impl SimpleSmt {
|
|||
{
|
||||
// check if the leaves count will fit the depth setup
|
||||
let mut entries = entries.into_iter();
|
||||
let max = 1 << self.depth;
|
||||
let max = 1 << self.depth.min(63);
|
||||
if entries.len() > max {
|
||||
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
|
||||
}
|
||||
|
@ -72,8 +94,7 @@ impl SimpleSmt {
|
|||
where
|
||||
I: IntoIterator<Item = RpoDigest>,
|
||||
{
|
||||
self.store
|
||||
.replace_empty_subtrees(hashes.into_iter().collect());
|
||||
self.replace_empty_subtrees(hashes.into_iter().collect());
|
||||
self
|
||||
}
|
||||
|
||||
|
@ -95,32 +116,30 @@ impl SimpleSmt {
|
|||
|
||||
/// Returns the set count of the keys of the leaves.
|
||||
pub fn leaves_count(&self) -> usize {
|
||||
self.store.leaves_count()
|
||||
self.leaves.len()
|
||||
}
|
||||
|
||||
/// Returns a node at the specified key
|
||||
/// Returns a node at the specified index.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if:
|
||||
/// * The specified depth is greater than the depth of the tree.
|
||||
pub fn get_node(&self, index: &NodeIndex) -> Result<Word, MerkleError> {
|
||||
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
|
||||
if index.is_root() {
|
||||
Err(MerkleError::DepthTooSmall(index.depth()))
|
||||
} else if index.depth() > self.depth() {
|
||||
Err(MerkleError::DepthTooBig(index.depth() as u64))
|
||||
} else if index.depth() == self.depth() {
|
||||
self.store
|
||||
.get_leaf_node(index.value())
|
||||
self.get_leaf_node(index.value())
|
||||
.or_else(|| {
|
||||
self.store
|
||||
.empty_hashes
|
||||
self.empty_hashes
|
||||
.get(index.depth() as usize)
|
||||
.copied()
|
||||
.map(Word::from)
|
||||
})
|
||||
.ok_or(MerkleError::InvalidIndex(*index))
|
||||
.ok_or(MerkleError::NodeNotInSet(index.value()))
|
||||
} else {
|
||||
let branch_node = self.store.get_branch_node(index);
|
||||
let branch_node = self.get_branch_node(&index);
|
||||
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
|
||||
}
|
||||
}
|
||||
|
@ -142,7 +161,7 @@ impl SimpleSmt {
|
|||
for _ in 0..index.depth() {
|
||||
let is_right = index.is_value_odd();
|
||||
index.move_up();
|
||||
let BranchNode { left, right } = self.store.get_branch_node(&index);
|
||||
let BranchNode { left, right } = self.get_branch_node(&index);
|
||||
let value = if is_right { left } else { right };
|
||||
path.push(*value);
|
||||
}
|
||||
|
@ -156,19 +175,31 @@ impl SimpleSmt {
|
|||
/// Returns an error if:
|
||||
/// * The specified key does not exist as a leaf node.
|
||||
pub fn get_leaf_path(&self, key: u64) -> Result<MerklePath, MerkleError> {
|
||||
self.get_path(NodeIndex::new(self.depth(), key))
|
||||
let index = NodeIndex::new(self.depth(), key)?;
|
||||
self.get_path(index)
|
||||
}
|
||||
|
||||
/// Iterator over the inner nodes of the [SimpleSmt].
|
||||
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
|
||||
self.branches.values().map(|e| InnerNodeInfo {
|
||||
value: e.parent().into(),
|
||||
left: e.left.into(),
|
||||
right: e.right.into(),
|
||||
})
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the tree
|
||||
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the
|
||||
/// tree.
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns an error if the specified key is not a valid leaf index for this tree.
|
||||
pub fn update_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
|
||||
if !self.store.check_leaf_node_exists(key) {
|
||||
return Err(MerkleError::InvalidIndex(NodeIndex::new(self.depth(), key)));
|
||||
let index = NodeIndex::new(self.depth(), key)?;
|
||||
if !self.check_leaf_node_exists(key) {
|
||||
return Err(MerkleError::NodeNotInSet(index.value()));
|
||||
}
|
||||
self.insert_leaf(key, value)?;
|
||||
|
||||
|
@ -177,67 +208,29 @@ impl SimpleSmt {
|
|||
|
||||
/// Inserts a leaf located at the specified key, and recomputes hashes by walking up the tree
|
||||
pub fn insert_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
|
||||
self.store.insert_leaf_node(key, value);
|
||||
self.insert_leaf_node(key, value);
|
||||
|
||||
// TODO consider using a map `index |-> word` instead of `index |-> (word, word)`
|
||||
let mut index = NodeIndex::new(self.depth(), key);
|
||||
let mut index = NodeIndex::new(self.depth(), key)?;
|
||||
let mut value = RpoDigest::from(value);
|
||||
for _ in 0..index.depth() {
|
||||
let is_right = index.is_value_odd();
|
||||
index.move_up();
|
||||
let BranchNode { left, right } = self.store.get_branch_node(&index);
|
||||
let BranchNode { left, right } = self.get_branch_node(&index);
|
||||
let (left, right) = if is_right {
|
||||
(left, value)
|
||||
} else {
|
||||
(value, right)
|
||||
};
|
||||
self.store.insert_branch_node(index, left, right);
|
||||
self.insert_branch_node(index, left, right);
|
||||
value = Rpo256::merge(&[left, right]);
|
||||
}
|
||||
self.root = value.into();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// STORE
|
||||
// ================================================================================================
|
||||
|
||||
/// A data store for sparse Merkle tree key-value pairs.
|
||||
/// Leaves and branch nodes are stored separately in B-tree maps, indexed by key and (key, depth)
|
||||
/// respectively. Hashes for blank subtrees at each layer are stored in `empty_hashes`, beginning
|
||||
/// with the root hash of an empty tree, and ending with the zero value of a leaf node.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct Store {
|
||||
pub(crate) branches: BTreeMap<NodeIndex, BranchNode>,
|
||||
leaves: BTreeMap<u64, Word>,
|
||||
pub(crate) empty_hashes: Vec<RpoDigest>,
|
||||
depth: u8,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct BranchNode {
|
||||
pub(crate) left: RpoDigest,
|
||||
pub(crate) right: RpoDigest,
|
||||
}
|
||||
|
||||
impl Store {
|
||||
fn new(depth: u8) -> (Self, Word) {
|
||||
let branches = BTreeMap::new();
|
||||
let leaves = BTreeMap::new();
|
||||
|
||||
// Construct empty node digests for each layer of the tree
|
||||
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
|
||||
|
||||
let root = empty_hashes[0].into();
|
||||
let store = Self {
|
||||
branches,
|
||||
leaves,
|
||||
empty_hashes,
|
||||
depth,
|
||||
};
|
||||
|
||||
(store, root)
|
||||
}
|
||||
// HELPER METHODS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
fn replace_empty_subtrees(&mut self, hashes: Vec<RpoDigest>) {
|
||||
self.empty_hashes = hashes;
|
||||
|
@ -269,8 +262,4 @@ impl Store {
|
|||
let branch = BranchNode { left, right };
|
||||
self.branches.insert(index, branch);
|
||||
}
|
||||
|
||||
fn leaves_count(&self) -> usize {
|
||||
self.leaves.len()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use super::{
|
||||
super::{int_to_node, MerkleTree, RpoDigest, SimpleSmt},
|
||||
super::{int_to_node, InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt},
|
||||
NodeIndex, Rpo256, Vec, Word,
|
||||
};
|
||||
use proptest::prelude::*;
|
||||
|
@ -61,8 +61,8 @@ fn build_sparse_tree() {
|
|||
let mt2 = MerkleTree::new(values.clone()).unwrap();
|
||||
assert_eq!(mt2.root(), smt.root());
|
||||
assert_eq!(
|
||||
mt2.get_path(NodeIndex::new(3, 6)).unwrap(),
|
||||
smt.get_path(NodeIndex::new(3, 6)).unwrap()
|
||||
mt2.get_path(NodeIndex::make(3, 6)).unwrap(),
|
||||
smt.get_path(NodeIndex::make(3, 6)).unwrap()
|
||||
);
|
||||
|
||||
// insert second value at distinct leaf branch
|
||||
|
@ -74,8 +74,8 @@ fn build_sparse_tree() {
|
|||
let mt3 = MerkleTree::new(values).unwrap();
|
||||
assert_eq!(mt3.root(), smt.root());
|
||||
assert_eq!(
|
||||
mt3.get_path(NodeIndex::new(3, 2)).unwrap(),
|
||||
smt.get_path(NodeIndex::new(3, 2)).unwrap()
|
||||
mt3.get_path(NodeIndex::make(3, 2)).unwrap(),
|
||||
smt.get_path(NodeIndex::make(3, 2)).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -88,8 +88,8 @@ fn build_full_tree() {
|
|||
|
||||
let (root, node2, node3) = compute_internal_nodes();
|
||||
assert_eq!(root, tree.root());
|
||||
assert_eq!(node2, tree.get_node(&NodeIndex::new(1, 0)).unwrap());
|
||||
assert_eq!(node3, tree.get_node(&NodeIndex::new(1, 1)).unwrap());
|
||||
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -100,10 +100,10 @@ fn get_values() {
|
|||
.unwrap();
|
||||
|
||||
// check depth 2
|
||||
assert_eq!(VALUES4[0], tree.get_node(&NodeIndex::new(2, 0)).unwrap());
|
||||
assert_eq!(VALUES4[1], tree.get_node(&NodeIndex::new(2, 1)).unwrap());
|
||||
assert_eq!(VALUES4[2], tree.get_node(&NodeIndex::new(2, 2)).unwrap());
|
||||
assert_eq!(VALUES4[3], tree.get_node(&NodeIndex::new(2, 3)).unwrap());
|
||||
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
|
||||
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
|
||||
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
|
||||
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -118,24 +118,69 @@ fn get_path() {
|
|||
// check depth 2
|
||||
assert_eq!(
|
||||
vec![VALUES4[1], node3],
|
||||
*tree.get_path(NodeIndex::new(2, 0)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 0)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![VALUES4[0], node3],
|
||||
*tree.get_path(NodeIndex::new(2, 1)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 1)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![VALUES4[3], node2],
|
||||
*tree.get_path(NodeIndex::new(2, 2)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 2)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
vec![VALUES4[2], node2],
|
||||
*tree.get_path(NodeIndex::new(2, 3)).unwrap()
|
||||
*tree.get_path(NodeIndex::make(2, 3)).unwrap()
|
||||
);
|
||||
|
||||
// check depth 1
|
||||
assert_eq!(vec![node3], *tree.get_path(NodeIndex::new(1, 0)).unwrap());
|
||||
assert_eq!(vec![node2], *tree.get_path(NodeIndex::new(1, 1)).unwrap());
|
||||
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
|
||||
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parent_node_iterator() -> Result<(), MerkleError> {
|
||||
let tree = SimpleSmt::new(2)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
|
||||
.unwrap();
|
||||
|
||||
// check depth 2
|
||||
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
|
||||
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
|
||||
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
|
||||
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
|
||||
|
||||
// get parent nodes
|
||||
let root = tree.root();
|
||||
let l1n0 = tree.get_node(NodeIndex::make(1, 0))?;
|
||||
let l1n1 = tree.get_node(NodeIndex::make(1, 1))?;
|
||||
let l2n0 = tree.get_node(NodeIndex::make(2, 0))?;
|
||||
let l2n1 = tree.get_node(NodeIndex::make(2, 1))?;
|
||||
let l2n2 = tree.get_node(NodeIndex::make(2, 2))?;
|
||||
let l2n3 = tree.get_node(NodeIndex::make(2, 3))?;
|
||||
|
||||
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
|
||||
let expected = vec![
|
||||
InnerNodeInfo {
|
||||
value: root.into(),
|
||||
left: l1n0.into(),
|
||||
right: l1n1.into(),
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: l1n0.into(),
|
||||
left: l2n0.into(),
|
||||
right: l2n1.into(),
|
||||
},
|
||||
InnerNodeInfo {
|
||||
value: l1n1.into(),
|
||||
left: l2n2.into(),
|
||||
right: l2n3.into(),
|
||||
},
|
||||
];
|
||||
assert_eq!(nodes, expected);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -218,7 +263,7 @@ fn small_tree_opening_is_consistent() {
|
|||
];
|
||||
|
||||
for (depth, key, path) in cases {
|
||||
let opening = tree.get_path(NodeIndex::new(depth, key)).unwrap();
|
||||
let opening = tree.get_path(NodeIndex::make(depth, key)).unwrap();
|
||||
|
||||
assert_eq!(path, *opening);
|
||||
}
|
||||
|
@ -242,7 +287,7 @@ proptest! {
|
|||
// traverse to root, fetching all paths
|
||||
for d in 1..depth {
|
||||
let k = key >> (depth - d);
|
||||
tree.get_path(NodeIndex::new(d, k)).unwrap();
|
||||
tree.get_path(NodeIndex::make(d, k)).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use super::mmr::{Mmr, MmrPeaks};
|
||||
use super::{
|
||||
BTreeMap, BTreeSet, EmptySubtreeRoots, MerkleError, MerklePath, MerklePathSet, MerkleTree,
|
||||
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
|
||||
BTreeMap, EmptySubtreeRoots, MerkleError, MerklePath, MerklePathSet, MerkleTree, NodeIndex,
|
||||
RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
|
||||
};
|
||||
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
|
||||
|
||||
|
@ -52,15 +53,19 @@ pub struct Node {
|
|||
///
|
||||
/// // every leaf except the last are the same
|
||||
/// for i in 0..7 {
|
||||
/// let d0 = store.get_node(ROOT0, NodeIndex::new(3, i)).unwrap();
|
||||
/// let d1 = store.get_node(ROOT1, NodeIndex::new(3, i)).unwrap();
|
||||
/// let idx0 = NodeIndex::new(3, i).unwrap();
|
||||
/// let d0 = store.get_node(ROOT0, idx0).unwrap();
|
||||
/// let idx1 = NodeIndex::new(3, i).unwrap();
|
||||
/// let d1 = store.get_node(ROOT1, idx1).unwrap();
|
||||
/// assert_eq!(d0, d1, "Both trees have the same leaf at pos {i}");
|
||||
/// }
|
||||
///
|
||||
/// // The leafs A-B-C-D are the same for both trees, so are their 2 immediate parents
|
||||
/// for i in 0..4 {
|
||||
/// let d0 = store.get_path(ROOT0, NodeIndex::new(3, i)).unwrap();
|
||||
/// let d1 = store.get_path(ROOT1, NodeIndex::new(3, i)).unwrap();
|
||||
/// let idx0 = NodeIndex::new(3, i).unwrap();
|
||||
/// let d0 = store.get_path(ROOT0, idx0).unwrap();
|
||||
/// let idx1 = NodeIndex::new(3, i).unwrap();
|
||||
/// let d1 = store.get_path(ROOT1, idx1).unwrap();
|
||||
/// assert_eq!(d0.path[0..2], d1.path[0..2], "Both sub-trees are equal up to two levels");
|
||||
/// }
|
||||
///
|
||||
|
@ -115,13 +120,19 @@ impl MerkleStore {
|
|||
Ok(self)
|
||||
}
|
||||
|
||||
/// Appends the provided sparse merkle tree represented by its `entries` to the set.
|
||||
pub fn with_sparse_merkle_tree<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
|
||||
/// Appends the provided Sparse Merkle tree represented by its `entries` to the set.
|
||||
///
|
||||
/// For more information, check [MerkleStore::add_sparse_merkle_tree].
|
||||
pub fn with_sparse_merkle_tree<R, I>(
|
||||
mut self,
|
||||
depth: u8,
|
||||
entries: R,
|
||||
) -> Result<Self, MerkleError>
|
||||
where
|
||||
R: IntoIterator<IntoIter = I>,
|
||||
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
|
||||
{
|
||||
self.add_sparse_merkle_tree(entries)?;
|
||||
self.add_sparse_merkle_tree(depth, entries)?;
|
||||
Ok(self)
|
||||
}
|
||||
|
||||
|
@ -145,6 +156,15 @@ impl MerkleStore {
|
|||
Ok(self)
|
||||
}
|
||||
|
||||
/// Appends the provided [Mmr] represented by its `leaves` to the set.
|
||||
pub fn with_mmr<I>(mut self, leaves: I) -> Result<Self, MerkleError>
|
||||
where
|
||||
I: IntoIterator<Item = Word>,
|
||||
{
|
||||
self.add_mmr(leaves)?;
|
||||
Ok(self)
|
||||
}
|
||||
|
||||
// PUBLIC ACCESSORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -168,12 +188,14 @@ impl MerkleStore {
|
|||
.get(&hash)
|
||||
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
|
||||
|
||||
for bit in index.bit_iterator().rev() {
|
||||
for i in (0..index.depth()).rev() {
|
||||
let node = self
|
||||
.nodes
|
||||
.get(&hash)
|
||||
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
|
||||
hash = if bit { node.right } else { node.left }
|
||||
|
||||
let bit = (index.value() >> i) & 1;
|
||||
hash = if bit == 0 { node.left } else { node.right }
|
||||
}
|
||||
|
||||
Ok(hash.into())
|
||||
|
@ -197,18 +219,19 @@ impl MerkleStore {
|
|||
.get(&hash)
|
||||
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
|
||||
|
||||
for bit in index.bit_iterator().rev() {
|
||||
for i in (0..index.depth()).rev() {
|
||||
let node = self
|
||||
.nodes
|
||||
.get(&hash)
|
||||
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
|
||||
|
||||
hash = if bit {
|
||||
path.push(node.left.into());
|
||||
node.right
|
||||
} else {
|
||||
let bit = (index.value() >> i) & 1;
|
||||
hash = if bit == 0 {
|
||||
path.push(node.right.into());
|
||||
node.left
|
||||
} else {
|
||||
path.push(node.left.into());
|
||||
node.right
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -221,6 +244,81 @@ impl MerkleStore {
|
|||
})
|
||||
}
|
||||
|
||||
/// Reconstructs a path from the root until a leaf or empty node and returns its depth.
|
||||
///
|
||||
/// The `tree_depth` parameter defines up to which depth the tree will be traversed, starting
|
||||
/// from `root`. The maximum value the argument accepts is [u64::BITS].
|
||||
///
|
||||
/// The traversed path from leaf to root will start at the least significant bit of `index`,
|
||||
/// and will be executed for `tree_depth` bits.
|
||||
///
|
||||
/// # Errors
|
||||
/// Will return an error if:
|
||||
/// - The provided root is not found.
|
||||
/// - The path from the root continues to a depth greater than `tree_depth`.
|
||||
/// - The provided `tree_depth` is greater than `64.
|
||||
/// - The provided `index` is not valid for a depth equivalent to `tree_depth`. For more
|
||||
/// information, check [NodeIndex::new].
|
||||
pub fn get_leaf_depth(
|
||||
&self,
|
||||
root: Word,
|
||||
tree_depth: u8,
|
||||
index: u64,
|
||||
) -> Result<u8, MerkleError> {
|
||||
// validate depth and index
|
||||
if tree_depth > 64 {
|
||||
return Err(MerkleError::DepthTooBig(tree_depth as u64));
|
||||
}
|
||||
NodeIndex::new(tree_depth, index)?;
|
||||
|
||||
// it's not illegal to have a maximum depth of `0`; we should just return the root in that
|
||||
// case. this check will simplify the implementation as we could overflow bits for depth
|
||||
// `0`.
|
||||
if tree_depth == 0 {
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
// check if the root exists, providing the proper error report if it doesn't
|
||||
let empty = EmptySubtreeRoots::empty_hashes(tree_depth);
|
||||
let mut hash: RpoDigest = root.into();
|
||||
if !self.nodes.contains_key(&hash) {
|
||||
return Err(MerkleError::RootNotInStore(hash.into()));
|
||||
}
|
||||
|
||||
// we traverse from root to leaf, so the path is reversed
|
||||
let mut path = (index << (64 - tree_depth)).reverse_bits();
|
||||
|
||||
// iterate every depth and reconstruct the path from root to leaf
|
||||
for depth in 0..tree_depth {
|
||||
// we short-circuit if an empty node has been found
|
||||
if hash == empty[depth as usize] {
|
||||
return Ok(depth);
|
||||
}
|
||||
|
||||
// fetch the children pair, mapped by its parent hash
|
||||
let children = match self.nodes.get(&hash) {
|
||||
Some(node) => node,
|
||||
None => return Ok(depth),
|
||||
};
|
||||
|
||||
// traverse down
|
||||
hash = if path & 1 == 0 {
|
||||
children.left
|
||||
} else {
|
||||
children.right
|
||||
};
|
||||
path >>= 1;
|
||||
}
|
||||
|
||||
// at max depth assert it doesn't have sub-trees
|
||||
if self.nodes.contains_key(&hash) {
|
||||
return Err(MerkleError::DepthTooBig(tree_depth as u64 + 1));
|
||||
}
|
||||
|
||||
// depleted bits; return max depth
|
||||
Ok(tree_depth)
|
||||
}
|
||||
|
||||
// STATE MUTATORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -243,56 +341,44 @@ impl MerkleStore {
|
|||
return Err(MerkleError::DepthTooSmall(leaves.len() as u8));
|
||||
}
|
||||
|
||||
let layers = leaves.len().ilog2();
|
||||
let tree = MerkleTree::new(leaves)?;
|
||||
|
||||
let mut depth = 0;
|
||||
let mut parent_offset = 1;
|
||||
let mut child_offset = 2;
|
||||
while depth < layers {
|
||||
let layer_size = 1usize << depth;
|
||||
for _ in 0..layer_size {
|
||||
// merkle tree is using level form representation, so left and right siblings are
|
||||
// next to each other
|
||||
let left = tree.nodes[child_offset];
|
||||
let right = tree.nodes[child_offset + 1];
|
||||
self.nodes.insert(
|
||||
tree.nodes[parent_offset].into(),
|
||||
Node {
|
||||
left: left.into(),
|
||||
right: right.into(),
|
||||
},
|
||||
);
|
||||
parent_offset += 1;
|
||||
child_offset += 2;
|
||||
}
|
||||
depth += 1;
|
||||
for node in tree.inner_nodes() {
|
||||
self.nodes.insert(
|
||||
node.value.into(),
|
||||
Node {
|
||||
left: node.left.into(),
|
||||
right: node.right.into(),
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
Ok(tree.nodes[1])
|
||||
Ok(tree.root())
|
||||
}
|
||||
|
||||
/// Adds all the nodes of a Sparse Merkle tree represented by `entries`.
|
||||
/// Adds a Sparse Merkle tree defined by the specified `entries` to the store, and returns the
|
||||
/// root of the added tree.
|
||||
///
|
||||
/// This will instantiate a Sparse Merkle tree using `entries` and include all the nodes into
|
||||
/// the store.
|
||||
/// The entries are expected to contain tuples of `(index, node)` describing nodes in the tree
|
||||
/// at `depth`.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This will return `InvalidEntriesCount` if the length of `entries` is not `63`.
|
||||
pub fn add_sparse_merkle_tree<R, I>(&mut self, entries: R) -> Result<Word, MerkleError>
|
||||
/// Returns an error if the provided `depth` is greater than [SimpleSmt::MAX_DEPTH].
|
||||
pub fn add_sparse_merkle_tree<R, I>(
|
||||
&mut self,
|
||||
depth: u8,
|
||||
entries: R,
|
||||
) -> Result<Word, MerkleError>
|
||||
where
|
||||
R: IntoIterator<IntoIter = I>,
|
||||
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
|
||||
{
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)?.with_leaves(entries)?;
|
||||
for branch in smt.store.branches.values() {
|
||||
let parent = Rpo256::merge(&[branch.left, branch.right]);
|
||||
let smt = SimpleSmt::new(depth)?.with_leaves(entries)?;
|
||||
for node in smt.inner_nodes() {
|
||||
self.nodes.insert(
|
||||
parent,
|
||||
node.value.into(),
|
||||
Node {
|
||||
left: branch.left,
|
||||
right: branch.right,
|
||||
left: node.left.into(),
|
||||
right: node.right.into(),
|
||||
},
|
||||
);
|
||||
}
|
||||
|
@ -311,7 +397,7 @@ impl MerkleStore {
|
|||
mut node: Word,
|
||||
path: MerklePath,
|
||||
) -> Result<Word, MerkleError> {
|
||||
let mut index = NodeIndex::new(self.nodes.len() as u8, index_value);
|
||||
let mut index = NodeIndex::new(path.len() as u8, index_value)?;
|
||||
|
||||
for sibling in path {
|
||||
let (left, right) = match index.is_value_odd() {
|
||||
|
@ -340,33 +426,14 @@ impl MerkleStore {
|
|||
/// into the store.
|
||||
///
|
||||
/// For further reference, check [MerkleStore::add_merkle_path].
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Every path must resolve to the same root, otherwise this will return an `ConflictingRoots`
|
||||
/// error.
|
||||
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<Word, MerkleError>
|
||||
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<(), MerkleError>
|
||||
where
|
||||
I: IntoIterator<Item = (u64, Word, MerklePath)>,
|
||||
{
|
||||
let paths: Vec<(u64, Word, MerklePath)> = paths.into_iter().collect();
|
||||
|
||||
let roots: BTreeSet<RpoDigest> = paths
|
||||
.iter()
|
||||
.map(|(index, node, path)| path.compute_root(*index, *node).into())
|
||||
.collect();
|
||||
|
||||
if roots.len() != 1 {
|
||||
return Err(MerkleError::ConflictingRoots(
|
||||
roots.iter().map(|v| Word::from(*v)).collect(),
|
||||
));
|
||||
}
|
||||
|
||||
for (index_value, node, path) in paths {
|
||||
for (index_value, node, path) in paths.into_iter() {
|
||||
self.add_merkle_path(index_value, node, path)?;
|
||||
}
|
||||
|
||||
Ok(roots.iter().next().unwrap().into())
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Appends the provided [MerklePathSet] into the store.
|
||||
|
@ -380,6 +447,25 @@ impl MerkleStore {
|
|||
Ok(root)
|
||||
}
|
||||
|
||||
/// Appends the provided [Mmr] into the store.
|
||||
pub fn add_mmr<I>(&mut self, leaves: I) -> Result<MmrPeaks, MerkleError>
|
||||
where
|
||||
I: IntoIterator<Item = Word>,
|
||||
{
|
||||
let mmr = Mmr::from(leaves);
|
||||
for node in mmr.inner_nodes() {
|
||||
self.nodes.insert(
|
||||
node.value.into(),
|
||||
Node {
|
||||
left: node.left.into(),
|
||||
right: node.right.into(),
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
Ok(mmr.accumulator())
|
||||
}
|
||||
|
||||
/// Sets a node to `value`.
|
||||
///
|
||||
/// # Errors
|
||||
|
@ -409,15 +495,9 @@ impl MerkleStore {
|
|||
let root2: RpoDigest = root2.into();
|
||||
|
||||
if !self.nodes.contains_key(&root1) {
|
||||
Err(MerkleError::NodeNotInStore(
|
||||
root1.into(),
|
||||
NodeIndex::new(0, 0),
|
||||
))
|
||||
Err(MerkleError::NodeNotInStore(root1.into(), NodeIndex::root()))
|
||||
} else if !self.nodes.contains_key(&root1) {
|
||||
Err(MerkleError::NodeNotInStore(
|
||||
root2.into(),
|
||||
NodeIndex::new(0, 0),
|
||||
))
|
||||
Err(MerkleError::NodeNotInStore(root2.into(), NodeIndex::root()))
|
||||
} else {
|
||||
let parent: Word = Rpo256::merge(&[root1, root2]).into();
|
||||
self.nodes.insert(
|
||||
|
|
|
@ -22,12 +22,12 @@ fn test_root_not_in_store() -> Result<(), MerkleError> {
|
|||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
|
||||
assert_eq!(
|
||||
store.get_node(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
|
||||
store.get_node(LEAVES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(LEAVES4[0])),
|
||||
"Leaf 0 is not a root"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_path(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
|
||||
store.get_path(LEAVES4[0], NodeIndex::make(mtree.depth(), 0)),
|
||||
Err(MerkleError::RootNotInStore(LEAVES4[0])),
|
||||
"Leaf 0 is not a root"
|
||||
);
|
||||
|
@ -45,22 +45,22 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES ARE CORRECT ==============================================================
|
||||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
"node 0 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
"node 1 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
"node 2 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
"node 3 must be in the tree"
|
||||
);
|
||||
|
@ -68,76 +68,76 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES MATCH TREE ===============================================================
|
||||
// sanity check the values returned by the store and the tree
|
||||
assert_eq!(
|
||||
mtree.get_node(NodeIndex::new(mtree.depth(), 0)),
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
|
||||
mtree.get_node(NodeIndex::make(mtree.depth(), 0)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
|
||||
"node 0 must be the same for both MerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_node(NodeIndex::new(mtree.depth(), 1)),
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
|
||||
mtree.get_node(NodeIndex::make(mtree.depth(), 1)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
|
||||
"node 1 must be the same for both MerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_node(NodeIndex::new(mtree.depth(), 2)),
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
|
||||
mtree.get_node(NodeIndex::make(mtree.depth(), 2)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
|
||||
"node 2 must be the same for both MerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_node(NodeIndex::new(mtree.depth(), 3)),
|
||||
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
|
||||
mtree.get_node(NodeIndex::make(mtree.depth(), 3)),
|
||||
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
|
||||
"node 3 must be the same for both MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
// STORE MERKLE PATH MATCHS ==============================================================
|
||||
// assert the merkle path returned by the store is the same as the one in the tree
|
||||
let result = store
|
||||
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 0))
|
||||
.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 0))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_path(NodeIndex::new(mtree.depth(), 0)),
|
||||
mtree.get_path(NodeIndex::make(mtree.depth(), 0)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 1))
|
||||
.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 1))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_path(NodeIndex::new(mtree.depth(), 1)),
|
||||
mtree.get_path(NodeIndex::make(mtree.depth(), 1)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 2))
|
||||
.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 2))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_path(NodeIndex::new(mtree.depth(), 2)),
|
||||
mtree.get_path(NodeIndex::make(mtree.depth(), 2)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 3))
|
||||
.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 3))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
mtree.get_path(NodeIndex::new(mtree.depth(), 3)),
|
||||
mtree.get_path(NodeIndex::make(mtree.depth(), 3)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
@ -153,7 +153,7 @@ fn test_empty_roots() {
|
|||
for depth in 0..255 {
|
||||
root = Rpo256::merge(&[root; 2]);
|
||||
assert!(
|
||||
store.get_node(root.into(), NodeIndex::new(0, 0)).is_ok(),
|
||||
store.get_node(root.into(), NodeIndex::make(0, 0)).is_ok(),
|
||||
"The root of the empty tree of depth {depth} must be registered"
|
||||
);
|
||||
}
|
||||
|
@ -169,7 +169,7 @@ fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
|
|||
for depth in 1..64 {
|
||||
let smt = SimpleSmt::new(depth)?;
|
||||
|
||||
let index = NodeIndex::new(depth, 0);
|
||||
let index = NodeIndex::make(depth, 0);
|
||||
let store_path = store.get_path(smt.root(), index)?;
|
||||
let smt_path = smt.get_path(index)?;
|
||||
assert_eq!(
|
||||
|
@ -181,7 +181,7 @@ fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
|
|||
"the returned merkle path does not match the computed values"
|
||||
);
|
||||
assert_eq!(
|
||||
store_path.path.compute_root(depth.into(), EMPTY),
|
||||
store_path.path.compute_root(depth.into(), EMPTY).unwrap(),
|
||||
smt.root(),
|
||||
"computed root from the path must match the empty tree root"
|
||||
);
|
||||
|
@ -197,7 +197,7 @@ fn test_get_invalid_node() {
|
|||
store
|
||||
.add_merkle_tree(LEAVES4.to_vec())
|
||||
.expect("adding a merkle tree to the store must work");
|
||||
let _ = store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3));
|
||||
let _ = store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -205,24 +205,24 @@ fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
|
|||
let mut store = MerkleStore::default();
|
||||
let keys2: [u64; 2] = [0, 1];
|
||||
let leaves2: [Word; 2] = [int_to_node(1), int_to_node(2)];
|
||||
store.add_sparse_merkle_tree(keys2.into_iter().zip(leaves2.into_iter()))?;
|
||||
store.add_sparse_merkle_tree(48, keys2.into_iter().zip(leaves2.into_iter()))?;
|
||||
let smt = SimpleSmt::new(1)
|
||||
.unwrap()
|
||||
.with_leaves(keys2.into_iter().zip(leaves2.into_iter()))
|
||||
.unwrap();
|
||||
|
||||
let idx = NodeIndex::new(1, 0);
|
||||
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[0]);
|
||||
let idx = NodeIndex::make(1, 0);
|
||||
assert_eq!(smt.get_node(idx).unwrap(), leaves2[0]);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), idx).unwrap(),
|
||||
smt.get_node(&idx).unwrap()
|
||||
smt.get_node(idx).unwrap()
|
||||
);
|
||||
|
||||
let idx = NodeIndex::new(1, 1);
|
||||
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[1]);
|
||||
let idx = NodeIndex::make(1, 1);
|
||||
assert_eq!(smt.get_node(idx).unwrap(), leaves2[1]);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), idx).unwrap(),
|
||||
smt.get_node(&idx).unwrap()
|
||||
smt.get_node(idx).unwrap()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
|
@ -231,7 +231,10 @@ fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
|
|||
#[test]
|
||||
fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
||||
let mut store = MerkleStore::default();
|
||||
store.add_sparse_merkle_tree(KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
|
||||
store.add_sparse_merkle_tree(
|
||||
SimpleSmt::MAX_DEPTH,
|
||||
KEYS4.into_iter().zip(LEAVES4.into_iter()),
|
||||
)?;
|
||||
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.unwrap()
|
||||
|
@ -241,27 +244,27 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES ARE CORRECT ==============================================================
|
||||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
"node 0 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
"node 1 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
"node 2 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
"node 3 must be in the tree"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 4)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
|
||||
Ok(EMPTY),
|
||||
"unmodified node 4 must be ZERO"
|
||||
);
|
||||
|
@ -269,94 +272,94 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES MATCH TREE ===============================================================
|
||||
// sanity check the values returned by the store and the tree
|
||||
assert_eq!(
|
||||
smt.get_node(&NodeIndex::new(smt.depth(), 0)),
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
|
||||
smt.get_node(NodeIndex::make(smt.depth(), 0)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
|
||||
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_node(&NodeIndex::new(smt.depth(), 1)),
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
|
||||
smt.get_node(NodeIndex::make(smt.depth(), 1)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
|
||||
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_node(&NodeIndex::new(smt.depth(), 2)),
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
|
||||
smt.get_node(NodeIndex::make(smt.depth(), 2)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
|
||||
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_node(&NodeIndex::new(smt.depth(), 3)),
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
|
||||
smt.get_node(NodeIndex::make(smt.depth(), 3)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
|
||||
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_node(&NodeIndex::new(smt.depth(), 4)),
|
||||
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 4)),
|
||||
smt.get_node(NodeIndex::make(smt.depth(), 4)),
|
||||
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
|
||||
"node 4 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
// STORE MERKLE PATH MATCHS ==============================================================
|
||||
// assert the merkle path returned by the store is the same as the one in the tree
|
||||
let result = store
|
||||
.get_path(smt.root(), NodeIndex::new(smt.depth(), 0))
|
||||
.get_path(smt.root(), NodeIndex::make(smt.depth(), 0))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::new(smt.depth(), 0)),
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 0)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(smt.root(), NodeIndex::new(smt.depth(), 1))
|
||||
.get_path(smt.root(), NodeIndex::make(smt.depth(), 1))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
"Value for merkle path at index 1 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::new(smt.depth(), 1)),
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 1)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(smt.root(), NodeIndex::new(smt.depth(), 2))
|
||||
.get_path(smt.root(), NodeIndex::make(smt.depth(), 2))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
"Value for merkle path at index 2 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::new(smt.depth(), 2)),
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 2)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 2 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(smt.root(), NodeIndex::new(smt.depth(), 3))
|
||||
.get_path(smt.root(), NodeIndex::make(smt.depth(), 3))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
"Value for merkle path at index 3 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::new(smt.depth(), 3)),
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 3)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 3 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(smt.root(), NodeIndex::new(smt.depth(), 4))
|
||||
.get_path(smt.root(), NodeIndex::make(smt.depth(), 4))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
EMPTY, result.value,
|
||||
"Value for merkle path at index 4 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
smt.get_path(NodeIndex::new(smt.depth(), 4)),
|
||||
smt.get_path(NodeIndex::make(smt.depth(), 4)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 4 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
@ -369,16 +372,16 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
|
||||
let i0 = 0;
|
||||
let p0 = mtree.get_path(NodeIndex::new(2, i0)).unwrap();
|
||||
let p0 = mtree.get_path(NodeIndex::make(2, i0)).unwrap();
|
||||
|
||||
let i1 = 1;
|
||||
let p1 = mtree.get_path(NodeIndex::new(2, i1)).unwrap();
|
||||
let p1 = mtree.get_path(NodeIndex::make(2, i1)).unwrap();
|
||||
|
||||
let i2 = 2;
|
||||
let p2 = mtree.get_path(NodeIndex::new(2, i2)).unwrap();
|
||||
let p2 = mtree.get_path(NodeIndex::make(2, i2)).unwrap();
|
||||
|
||||
let i3 = 3;
|
||||
let p3 = mtree.get_path(NodeIndex::new(2, i3)).unwrap();
|
||||
let p3 = mtree.get_path(NodeIndex::make(2, i3)).unwrap();
|
||||
|
||||
let paths = [
|
||||
(i0, LEAVES4[i0 as usize], p0),
|
||||
|
@ -398,22 +401,22 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES ARE CORRECT ==============================================================
|
||||
// checks the leaves in the store corresponds to the expected values
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 0)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 0)),
|
||||
Ok(LEAVES4[0]),
|
||||
"node 0 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 1)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 1)),
|
||||
Ok(LEAVES4[1]),
|
||||
"node 1 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 2)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 2)),
|
||||
Ok(LEAVES4[2]),
|
||||
"node 2 must be in the set"
|
||||
);
|
||||
assert_eq!(
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 3)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 3)),
|
||||
Ok(LEAVES4[3]),
|
||||
"node 3 must be in the set"
|
||||
);
|
||||
|
@ -421,76 +424,76 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
|
|||
// STORE LEAVES MATCH SET ================================================================
|
||||
// sanity check the values returned by the store and the set
|
||||
assert_eq!(
|
||||
set.get_node(NodeIndex::new(set.depth(), 0)),
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 0)),
|
||||
set.get_node(NodeIndex::make(set.depth(), 0)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 0)),
|
||||
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_node(NodeIndex::new(set.depth(), 1)),
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 1)),
|
||||
set.get_node(NodeIndex::make(set.depth(), 1)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 1)),
|
||||
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_node(NodeIndex::new(set.depth(), 2)),
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 2)),
|
||||
set.get_node(NodeIndex::make(set.depth(), 2)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 2)),
|
||||
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_node(NodeIndex::new(set.depth(), 3)),
|
||||
store.get_node(set.root(), NodeIndex::new(set.depth(), 3)),
|
||||
set.get_node(NodeIndex::make(set.depth(), 3)),
|
||||
store.get_node(set.root(), NodeIndex::make(set.depth(), 3)),
|
||||
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
// STORE MERKLE PATH MATCHS ==============================================================
|
||||
// assert the merkle path returned by the store is the same as the one in the set
|
||||
let result = store
|
||||
.get_path(set.root(), NodeIndex::new(set.depth(), 0))
|
||||
.get_path(set.root(), NodeIndex::make(set.depth(), 0))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[0], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_path(NodeIndex::new(set.depth(), 0)),
|
||||
set.get_path(NodeIndex::make(set.depth(), 0)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(set.root(), NodeIndex::new(set.depth(), 1))
|
||||
.get_path(set.root(), NodeIndex::make(set.depth(), 1))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[1], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_path(NodeIndex::new(set.depth(), 1)),
|
||||
set.get_path(NodeIndex::make(set.depth(), 1)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(set.root(), NodeIndex::new(set.depth(), 2))
|
||||
.get_path(set.root(), NodeIndex::make(set.depth(), 2))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[2], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_path(NodeIndex::new(set.depth(), 2)),
|
||||
set.get_path(NodeIndex::make(set.depth(), 2)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
||||
let result = store
|
||||
.get_path(set.root(), NodeIndex::new(set.depth(), 3))
|
||||
.get_path(set.root(), NodeIndex::make(set.depth(), 3))
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
LEAVES4[3], result.value,
|
||||
"Value for merkle path at index 0 must match leaf value"
|
||||
);
|
||||
assert_eq!(
|
||||
set.get_path(NodeIndex::new(set.depth(), 3)),
|
||||
set.get_path(NodeIndex::make(set.depth(), 3)),
|
||||
Ok(result.path),
|
||||
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
|
||||
);
|
||||
|
@ -547,7 +550,7 @@ fn store_path_opens_from_leaf() {
|
|||
.with_merkle_tree([a, b, c, d, e, f, g, h])
|
||||
.unwrap();
|
||||
let path = store
|
||||
.get_path(root.into(), NodeIndex::new(3, 1))
|
||||
.get_path(root.into(), NodeIndex::make(3, 1))
|
||||
.unwrap()
|
||||
.path;
|
||||
|
||||
|
@ -560,7 +563,7 @@ fn test_set_node() -> Result<(), MerkleError> {
|
|||
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
|
||||
let mut store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
|
||||
let value = int_to_node(42);
|
||||
let index = NodeIndex::new(mtree.depth(), 0);
|
||||
let index = NodeIndex::make(mtree.depth(), 0);
|
||||
let new_root = store.set_node(mtree.root(), index, value)?.root;
|
||||
assert_eq!(
|
||||
store.get_node(new_root, index),
|
||||
|
@ -579,54 +582,222 @@ fn test_constructors() -> Result<(), MerkleError> {
|
|||
let depth = mtree.depth();
|
||||
let leaves = 2u64.pow(depth.into());
|
||||
for index in 0..leaves {
|
||||
let index = NodeIndex::new(depth, index);
|
||||
let index = NodeIndex::make(depth, index);
|
||||
let value_path = store.get_path(mtree.root(), index)?;
|
||||
assert_eq!(mtree.get_path(index)?, value_path.path);
|
||||
}
|
||||
|
||||
let depth = 32;
|
||||
let store = MerkleStore::default()
|
||||
.with_sparse_merkle_tree(KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
|
||||
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
|
||||
.with_sparse_merkle_tree(depth, KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
|
||||
let smt = SimpleSmt::new(depth)
|
||||
.unwrap()
|
||||
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
|
||||
.unwrap();
|
||||
let depth = smt.depth();
|
||||
|
||||
for key in KEYS4 {
|
||||
let index = NodeIndex::new(depth, key);
|
||||
let index = NodeIndex::make(depth, key);
|
||||
let value_path = store.get_path(smt.root(), index)?;
|
||||
assert_eq!(smt.get_path(index)?, value_path.path);
|
||||
}
|
||||
|
||||
let d = 2;
|
||||
let paths = [
|
||||
(0, LEAVES4[0], mtree.get_path(NodeIndex::new(d, 0)).unwrap()),
|
||||
(1, LEAVES4[1], mtree.get_path(NodeIndex::new(d, 1)).unwrap()),
|
||||
(2, LEAVES4[2], mtree.get_path(NodeIndex::new(d, 2)).unwrap()),
|
||||
(3, LEAVES4[3], mtree.get_path(NodeIndex::new(d, 3)).unwrap()),
|
||||
(
|
||||
0,
|
||||
LEAVES4[0],
|
||||
mtree.get_path(NodeIndex::make(d, 0)).unwrap(),
|
||||
),
|
||||
(
|
||||
1,
|
||||
LEAVES4[1],
|
||||
mtree.get_path(NodeIndex::make(d, 1)).unwrap(),
|
||||
),
|
||||
(
|
||||
2,
|
||||
LEAVES4[2],
|
||||
mtree.get_path(NodeIndex::make(d, 2)).unwrap(),
|
||||
),
|
||||
(
|
||||
3,
|
||||
LEAVES4[3],
|
||||
mtree.get_path(NodeIndex::make(d, 3)).unwrap(),
|
||||
),
|
||||
];
|
||||
|
||||
let store1 = MerkleStore::default().with_merkle_paths(paths.clone())?;
|
||||
let store2 = MerkleStore::default()
|
||||
.with_merkle_path(0, LEAVES4[0], mtree.get_path(NodeIndex::new(d, 0))?)?
|
||||
.with_merkle_path(1, LEAVES4[1], mtree.get_path(NodeIndex::new(d, 1))?)?
|
||||
.with_merkle_path(2, LEAVES4[2], mtree.get_path(NodeIndex::new(d, 2))?)?
|
||||
.with_merkle_path(3, LEAVES4[3], mtree.get_path(NodeIndex::new(d, 3))?)?;
|
||||
.with_merkle_path(0, LEAVES4[0], mtree.get_path(NodeIndex::make(d, 0))?)?
|
||||
.with_merkle_path(1, LEAVES4[1], mtree.get_path(NodeIndex::make(d, 1))?)?
|
||||
.with_merkle_path(2, LEAVES4[2], mtree.get_path(NodeIndex::make(d, 2))?)?
|
||||
.with_merkle_path(3, LEAVES4[3], mtree.get_path(NodeIndex::make(d, 3))?)?;
|
||||
let set = MerklePathSet::new(d).with_paths(paths).unwrap();
|
||||
|
||||
for key in [0, 1, 2, 3] {
|
||||
let index = NodeIndex::new(d, key);
|
||||
let index = NodeIndex::make(d, key);
|
||||
let value_path1 = store1.get_path(set.root(), index)?;
|
||||
let value_path2 = store2.get_path(set.root(), index)?;
|
||||
assert_eq!(value_path1, value_path2);
|
||||
|
||||
let index = NodeIndex::new(d, key);
|
||||
let index = NodeIndex::make(d, key);
|
||||
assert_eq!(set.get_path(index)?, value_path1.path);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn node_path_should_be_truncated_by_midtier_insert() {
|
||||
let key = 0b11010010_11001100_11001100_11001100_11001100_11001100_11001100_11001100_u64;
|
||||
|
||||
let mut store = MerkleStore::new();
|
||||
let root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
|
||||
|
||||
// insert first node - works as expected
|
||||
let depth = 64;
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
let index = NodeIndex::new(depth, key).unwrap();
|
||||
let root = store.set_node(root, index, node).unwrap().root;
|
||||
let result = store.get_node(root, index).unwrap();
|
||||
let path = store.get_path(root, index).unwrap().path;
|
||||
assert_eq!(node, result);
|
||||
assert_eq!(path.depth(), depth);
|
||||
assert!(path.verify(index.value(), result, &root));
|
||||
|
||||
// flip the first bit of the key and insert the second node on a different depth
|
||||
let key = key ^ (1 << 63);
|
||||
let key = key >> 8;
|
||||
let depth = 56;
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
let index = NodeIndex::new(depth, key).unwrap();
|
||||
let root = store.set_node(root, index, node).unwrap().root;
|
||||
let result = store.get_node(root, index).unwrap();
|
||||
let path = store.get_path(root, index).unwrap().path;
|
||||
assert_eq!(node, result);
|
||||
assert_eq!(path.depth(), depth);
|
||||
assert!(path.verify(index.value(), result, &root));
|
||||
|
||||
// attempt to fetch a path of the second node to depth 64
|
||||
// should fail because the previously inserted node will remove its sub-tree from the set
|
||||
let key = key << 8;
|
||||
let index = NodeIndex::new(64, key).unwrap();
|
||||
assert!(store.get_node(root, index).is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_leaf_depth_works_depth_64() {
|
||||
let mut store = MerkleStore::new();
|
||||
let mut root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
|
||||
let key = u64::MAX;
|
||||
|
||||
// this will create a rainbow tree and test all opening to depth 64
|
||||
for d in 0..64 {
|
||||
let k = key & (u64::MAX >> d);
|
||||
let node = [Felt::new(k); WORD_SIZE];
|
||||
let index = NodeIndex::new(64, k).unwrap();
|
||||
|
||||
// assert the leaf doesn't exist before the insert. the returned depth should always
|
||||
// increment with the paths count of the set, as they are insersecting one another up to
|
||||
// the first bits of the used key.
|
||||
assert_eq!(d, store.get_leaf_depth(root, 64, k).unwrap());
|
||||
|
||||
// insert and assert the correct depth
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
assert_eq!(64, store.get_leaf_depth(root, 64, k).unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_leaf_depth_works_with_incremental_depth() {
|
||||
let mut store = MerkleStore::new();
|
||||
let mut root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
|
||||
|
||||
// insert some path to the left of the root and assert it
|
||||
let key = 0b01001011_10110110_00001101_01110100_00111011_10101101_00000100_01000001_u64;
|
||||
assert_eq!(0, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
let depth = 64;
|
||||
let index = NodeIndex::new(depth, key).unwrap();
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
|
||||
// flip the key to the right of the root and insert some content on depth 16
|
||||
let key = 0b11001011_10110110_00000000_00000000_00000000_00000000_00000000_00000000_u64;
|
||||
assert_eq!(1, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
let depth = 16;
|
||||
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
|
||||
// attempt the sibling of the previous leaf
|
||||
let key = 0b11001011_10110111_00000000_00000000_00000000_00000000_00000000_00000000_u64;
|
||||
assert_eq!(16, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
|
||||
// move down to the next depth and assert correct behavior
|
||||
let key = 0b11001011_10110100_00000000_00000000_00000000_00000000_00000000_00000000_u64;
|
||||
assert_eq!(15, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
let depth = 17;
|
||||
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
|
||||
let node = [Felt::new(key); WORD_SIZE];
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_leaf_depth_works_with_depth_8() {
|
||||
let mut store = MerkleStore::new();
|
||||
let mut root: Word = EmptySubtreeRoots::empty_hashes(8)[0].into();
|
||||
|
||||
// insert some random, 8 depth keys. `a` diverges from the first bit
|
||||
let a = 0b01101001_u64;
|
||||
let b = 0b10011001_u64;
|
||||
let c = 0b10010110_u64;
|
||||
let d = 0b11110110_u64;
|
||||
|
||||
for k in [a, b, c, d] {
|
||||
let index = NodeIndex::new(8, k).unwrap();
|
||||
let node = [Felt::new(k); WORD_SIZE];
|
||||
root = store.set_node(root, index, node).unwrap().root;
|
||||
}
|
||||
|
||||
// assert all leaves returns the inserted depth
|
||||
for k in [a, b, c, d] {
|
||||
assert_eq!(8, store.get_leaf_depth(root, 8, k).unwrap());
|
||||
}
|
||||
|
||||
// flip last bit of a and expect it to return the the same depth, but for an empty node
|
||||
assert_eq!(8, store.get_leaf_depth(root, 8, 0b01101000_u64).unwrap());
|
||||
|
||||
// flip fourth bit of a and expect an empty node on depth 4
|
||||
assert_eq!(4, store.get_leaf_depth(root, 8, 0b01111001_u64).unwrap());
|
||||
|
||||
// flip third bit of a and expect an empty node on depth 3
|
||||
assert_eq!(3, store.get_leaf_depth(root, 8, 0b01001001_u64).unwrap());
|
||||
|
||||
// flip second bit of a and expect an empty node on depth 2
|
||||
assert_eq!(2, store.get_leaf_depth(root, 8, 0b00101001_u64).unwrap());
|
||||
|
||||
// flip fourth bit of c and expect an empty node on depth 4
|
||||
assert_eq!(4, store.get_leaf_depth(root, 8, 0b10000110_u64).unwrap());
|
||||
|
||||
// flip second bit of d and expect an empty node on depth 3 as depth 2 conflicts with b and c
|
||||
assert_eq!(3, store.get_leaf_depth(root, 8, 0b10110110_u64).unwrap());
|
||||
|
||||
// duplicate the tree on `a` and assert the depth is short-circuited by such sub-tree
|
||||
let index = NodeIndex::new(8, a).unwrap();
|
||||
root = store.set_node(root, index, root).unwrap().root;
|
||||
assert_eq!(
|
||||
Err(MerkleError::DepthTooBig(9)),
|
||||
store.get_leaf_depth(root, 8, a)
|
||||
);
|
||||
}
|
||||
|
||||
#[cfg(std)]
|
||||
#[test]
|
||||
fn test_serialization() -> Result<(), Box<dyn Error>> {
|
||||
|
|
Loading…
Add table
Reference in a new issue