miden-crypto/src/hash/rescue/rpx/mod.rs
2025-03-13 13:36:22 -07:00

385 lines
17 KiB
Rust

use core::ops::Range;
use super::{
ARK1, ARK2, BINARY_CHUNK_SIZE, CAPACITY_RANGE, CubeExtension, DIGEST_BYTES, DIGEST_RANGE,
DIGEST_SIZE, Digest, ElementHasher, Felt, FieldElement, Hasher, INPUT1_RANGE, INPUT2_RANGE,
MDS, NUM_ROUNDS, RATE_RANGE, RATE_WIDTH, STATE_WIDTH, StarkField, ZERO, add_constants,
add_constants_and_apply_inv_sbox, add_constants_and_apply_sbox, apply_inv_sbox, apply_mds,
apply_sbox,
};
mod digest;
pub use digest::{RpxDigest, RpxDigestError};
#[cfg(test)]
mod tests;
pub type CubicExtElement = CubeExtension<Felt>;
// HASHER IMPLEMENTATION
// ================================================================================================
/// Implementation of the Rescue Prime eXtension hash function with 256-bit output.
///
/// The hash function is based on the XHash12 construction in [specifications](https://eprint.iacr.org/2023/1045)
///
/// The parameters used to instantiate the function are:
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
/// * State width: 12 field elements.
/// * Capacity size: 4 field elements.
/// * S-Box degree: 7.
/// * Rounds: There are 3 different types of rounds:
/// - (FB): `apply_mds` → `add_constants` → `apply_sbox` → `apply_mds` → `add_constants` →
/// `apply_inv_sbox`.
/// - (E): `add_constants` → `ext_sbox` (which is raising to power 7 in the degree 3 extension
/// field).
/// - (M): `apply_mds` → `add_constants`.
/// * Permutation: (FB) (E) (FB) (E) (FB) (E) (M).
///
/// The above parameters target a 128-bit security level. The digest consists of four field elements
/// and it can be serialized into 32 bytes (256 bits).
///
/// ## Hash output consistency
/// Functions [hash_elements()](Rpx256::hash_elements), [merge()](Rpx256::merge), and
/// [merge_with_int()](Rpx256::merge_with_int) are internally consistent. That is, computing
/// a hash for the same set of elements using these functions will always produce the same
/// result. For example, merging two digests using [merge()](Rpx256::merge) will produce the
/// same result as hashing 8 elements which make up these digests using
/// [hash_elements()](Rpx256::hash_elements) function.
///
/// However, [hash()](Rpx256::hash) function is not consistent with functions mentioned above.
/// For example, if we take two field elements, serialize them to bytes and hash them using
/// [hash()](Rpx256::hash), the result will differ from the result obtained by hashing these
/// elements directly using [hash_elements()](Rpx256::hash_elements) function. The reason for
/// this difference is that [hash()](Rpx256::hash) function needs to be able to handle
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
/// deserialization procedure used by this function is different from the procedure used to
/// deserialize valid field elements.
///
/// Thus, if the underlying data consists of valid field elements, it might make more sense
/// to deserialize them into field elements and then hash them using
/// [hash_elements()](Rpx256::hash_elements) function rather than hashing the serialized bytes
/// using [hash()](Rpx256::hash) function.
///
/// ## Domain separation
/// [merge_in_domain()](Rpx256::merge_in_domain) hashes two digests into one digest with some domain
/// identifier and the current implementation sets the second capacity element to the value of
/// this domain identifier. Using a similar argument to the one formulated for domain separation
/// in Appendix C of the [specifications](https://eprint.iacr.org/2023/1045), one sees that doing
/// so degrades only pre-image resistance, from its initial bound of c.log_2(p), by as much as
/// the log_2 of the size of the domain identifier space. Since pre-image resistance becomes
/// the bottleneck for the security bound of the sponge in overwrite-mode only when it is
/// lower than 2^128, we see that the target 128-bit security level is maintained as long as
/// the size of the domain identifier space, including for padding, is less than 2^128.
///
/// ## Hashing of empty input
/// The current implementation hashes empty input to the zero digest [0, 0, 0, 0]. This has
/// the benefit of requiring no calls to the RPX permutation when hashing empty input.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Rpx256();
impl Hasher for Rpx256 {
/// Rpx256 collision resistance is 128-bits.
const COLLISION_RESISTANCE: u32 = 128;
type Digest = RpxDigest;
fn hash(bytes: &[u8]) -> Self::Digest {
// initialize the state with zeroes
let mut state = [ZERO; STATE_WIDTH];
// determine the number of field elements needed to encode `bytes` when each field element
// represents at most 7 bytes.
let num_field_elem = bytes.len().div_ceil(BINARY_CHUNK_SIZE);
// set the first capacity element to `RATE_WIDTH + (num_field_elem % RATE_WIDTH)`. We do
// this to achieve:
// 1. Domain separating hashing of `[u8]` from hashing of `[Felt]`.
// 2. Avoiding collisions at the `[Felt]` representation of the encoded bytes.
state[CAPACITY_RANGE.start] =
Felt::from((RATE_WIDTH + (num_field_elem % RATE_WIDTH)) as u8);
// initialize a buffer to receive the little-endian elements.
let mut buf = [0_u8; 8];
// iterate the chunks of bytes, creating a field element from each chunk and copying it
// into the state.
//
// every time the rate range is filled, a permutation is performed. if the final value of
// `rate_pos` is not zero, then the chunks count wasn't enough to fill the state range,
// and an additional permutation must be performed.
let mut current_chunk_idx = 0_usize;
// handle the case of an empty `bytes`
let last_chunk_idx = if num_field_elem == 0 {
current_chunk_idx
} else {
num_field_elem - 1
};
let rate_pos = bytes.chunks(BINARY_CHUNK_SIZE).fold(0, |rate_pos, chunk| {
// copy the chunk into the buffer
if current_chunk_idx != last_chunk_idx {
buf[..BINARY_CHUNK_SIZE].copy_from_slice(chunk);
} else {
// on the last iteration, we pad `buf` with a 1 followed by as many 0's as are
// needed to fill it
buf.fill(0);
buf[..chunk.len()].copy_from_slice(chunk);
buf[chunk.len()] = 1;
}
current_chunk_idx += 1;
// set the current rate element to the input. since we take at most 7 bytes, we are
// guaranteed that the inputs data will fit into a single field element.
state[RATE_RANGE.start + rate_pos] = Felt::new(u64::from_le_bytes(buf));
// proceed filling the range. if it's full, then we apply a permutation and reset the
// counter to the beginning of the range.
if rate_pos == RATE_WIDTH - 1 {
Self::apply_permutation(&mut state);
0
} else {
rate_pos + 1
}
});
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation. we
// don't need to apply any extra padding because the first capacity element contains a
// flag indicating the number of field elements constituting the last block when the latter
// is not divisible by `RATE_WIDTH`.
if rate_pos != 0 {
state[RATE_RANGE.start + rate_pos..RATE_RANGE.end].fill(ZERO);
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the rate as hash result.
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = Self::Digest::digests_as_elements_iter(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// apply the RPX permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge_many(values: &[Self::Digest]) -> Self::Digest {
Self::hash_elements(Self::Digest::digests_as_elements(values))
}
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
// initialize the state as follows:
// - seed is copied into the first 4 elements of the rate portion of the state.
// - if the value fits into a single field element, copy it into the fifth rate element and
// set the first capacity element to 5.
// - if the value doesn't fit into a single field element, split it into two field elements,
// copy them into rate elements 5 and 6 and set the first capacity element to 6.
let mut state = [ZERO; STATE_WIDTH];
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
state[INPUT2_RANGE.start] = Felt::new(value);
if value < Felt::MODULUS {
state[CAPACITY_RANGE.start] = Felt::from(5_u8);
} else {
state[INPUT2_RANGE.start + 1] = Felt::new(value / Felt::MODULUS);
state[CAPACITY_RANGE.start] = Felt::from(6_u8);
}
// apply the RPX permutation and return the first four elements of the rate
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
impl ElementHasher for Rpx256 {
type BaseField = Felt;
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
// convert the elements into a list of base field elements
let elements = E::slice_as_base_elements(elements);
// initialize state to all zeros, except for the first element of the capacity part, which
// is set to `elements.len() % RATE_WIDTH`.
let mut state = [ZERO; STATE_WIDTH];
state[CAPACITY_RANGE.start] = Self::BaseField::from((elements.len() % RATE_WIDTH) as u8);
// absorb elements into the state one by one until the rate portion of the state is filled
// up; then apply the Rescue permutation and start absorbing again; repeat until all
// elements have been absorbed
let mut i = 0;
for &element in elements.iter() {
state[RATE_RANGE.start + i] = element;
i += 1;
if i % RATE_WIDTH == 0 {
Self::apply_permutation(&mut state);
i = 0;
}
}
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation after
// padding by as many 0 as necessary to make the input length a multiple of the RATE_WIDTH.
if i > 0 {
while i != RATE_WIDTH {
state[RATE_RANGE.start + i] = ZERO;
i += 1;
}
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the state as hash result
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
// HASH FUNCTION IMPLEMENTATION
// ================================================================================================
impl Rpx256 {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
pub const STATE_WIDTH: usize = STATE_WIDTH;
/// The rate portion of the state is located in elements 4 through 11 (inclusive).
pub const RATE_RANGE: Range<usize> = RATE_RANGE;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
pub const CAPACITY_RANGE: Range<usize> = CAPACITY_RANGE;
/// The output of the hash function can be read from state elements 4, 5, 6, and 7.
pub const DIGEST_RANGE: Range<usize> = DIGEST_RANGE;
/// MDS matrix used for computing the linear layer in the (FB) and (E) rounds.
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = MDS;
/// Round constants added to the hasher state in the first half of the round.
pub const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK1;
/// Round constants added to the hasher state in the second half of the round.
pub const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK2;
// TRAIT PASS-THROUGH FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Returns a hash of the provided sequence of bytes.
#[inline(always)]
pub fn hash(bytes: &[u8]) -> RpxDigest {
<Self as Hasher>::hash(bytes)
}
/// Returns a hash of two digests. This method is intended for use in construction of
/// Merkle trees and verification of Merkle paths.
#[inline(always)]
pub fn merge(values: &[RpxDigest; 2]) -> RpxDigest {
<Self as Hasher>::merge(values)
}
/// Returns a hash of the provided field elements.
#[inline(always)]
pub fn hash_elements<E: FieldElement<BaseField = Felt>>(elements: &[E]) -> RpxDigest {
<Self as ElementHasher>::hash_elements(elements)
}
// DOMAIN IDENTIFIER
// --------------------------------------------------------------------------------------------
/// Returns a hash of two digests and a domain identifier.
pub fn merge_in_domain(values: &[RpxDigest; 2], domain: Felt) -> RpxDigest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = RpxDigest::digests_as_elements_iter(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// set the second capacity element to the domain value. The first capacity element is used
// for padding purposes.
state[CAPACITY_RANGE.start + 1] = domain;
// apply the RPX permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
// RPX PERMUTATION
// --------------------------------------------------------------------------------------------
/// Applies RPX permutation to the provided state.
#[inline(always)]
pub fn apply_permutation(state: &mut [Felt; STATE_WIDTH]) {
Self::apply_fb_round(state, 0);
Self::apply_ext_round(state, 1);
Self::apply_fb_round(state, 2);
Self::apply_ext_round(state, 3);
Self::apply_fb_round(state, 4);
Self::apply_ext_round(state, 5);
Self::apply_final_round(state, 6);
}
// RPX PERMUTATION ROUND FUNCTIONS
// --------------------------------------------------------------------------------------------
/// (FB) round function.
#[inline(always)]
pub fn apply_fb_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
apply_mds(state);
if !add_constants_and_apply_sbox(state, &ARK1[round]) {
add_constants(state, &ARK1[round]);
apply_sbox(state);
}
apply_mds(state);
if !add_constants_and_apply_inv_sbox(state, &ARK2[round]) {
add_constants(state, &ARK2[round]);
apply_inv_sbox(state);
}
}
/// (E) round function.
#[inline(always)]
pub fn apply_ext_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
// add constants
add_constants(state, &ARK1[round]);
// decompose the state into 4 elements in the cubic extension field and apply the power 7
// map to each of the elements
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = *state;
let ext0 = Self::exp7(CubicExtElement::new(s0, s1, s2));
let ext1 = Self::exp7(CubicExtElement::new(s3, s4, s5));
let ext2 = Self::exp7(CubicExtElement::new(s6, s7, s8));
let ext3 = Self::exp7(CubicExtElement::new(s9, s10, s11));
// decompose the state back into 12 base field elements
let arr_ext = [ext0, ext1, ext2, ext3];
*state = CubicExtElement::slice_as_base_elements(&arr_ext)
.try_into()
.expect("shouldn't fail");
}
/// (M) round function.
#[inline(always)]
pub fn apply_final_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
apply_mds(state);
add_constants(state, &ARK1[round]);
}
/// Computes an exponentiation to the power 7 in cubic extension field.
#[inline(always)]
pub fn exp7(x: CubeExtension<Felt>) -> CubeExtension<Felt> {
let x2 = x.square();
let x4 = x2.square();
let x3 = x2 * x;
x3 * x4
}
}