miden-crypto/src/merkle/smt/full/concurrent/tests.rs
2025-03-13 13:36:22 -07:00

662 lines
28 KiB
Rust

use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use assert_matches::assert_matches;
use proptest::prelude::*;
use rand::{Rng, prelude::IteratorRandom, rng};
use super::{
COLS_PER_SUBTREE, InnerNode, NodeIndex, NodeMutations, PairComputations, RpoDigest, SMT_DEPTH,
SUBTREE_DEPTH, Smt, SmtLeaf, SparseMerkleTree, SubtreeLeaf, SubtreeLeavesIter, UnorderedMap,
build_subtree,
};
use crate::{
EMPTY_WORD, ONE, Word, ZERO,
merkle::{LeafIndex, MerkleError, smt::Felt},
};
fn smtleaf_to_subtree_leaf(leaf: &SmtLeaf) -> SubtreeLeaf {
SubtreeLeaf {
col: leaf.index().index.value(),
hash: leaf.hash(),
}
}
#[test]
fn test_sorted_pairs_to_leaves() {
let entries: Vec<(RpoDigest, Word)> = vec![
// Subtree 0.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(16)]), [ONE; 4]),
(RpoDigest::new([ONE, ONE, ONE, Felt::new(17)]), [ONE; 4]),
// Leaf index collision.
(RpoDigest::new([ONE, ONE, Felt::new(10), Felt::new(20)]), [ONE; 4]),
(RpoDigest::new([ONE, ONE, Felt::new(20), Felt::new(20)]), [ONE; 4]),
// Subtree 1. Normal single leaf again.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(400)]), [ONE; 4]), // Subtree boundary.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(401)]), [ONE; 4]),
// Subtree 2. Another normal leaf.
(RpoDigest::new([ONE, ONE, ONE, Felt::new(1024)]), [ONE; 4]),
];
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let control_leaves: Vec<SmtLeaf> = {
let mut entries_iter = entries.iter().cloned();
let mut next_entry = || entries_iter.next().unwrap();
let control_leaves = vec![
// Subtree 0.
SmtLeaf::Single(next_entry()),
SmtLeaf::Single(next_entry()),
SmtLeaf::new_multiple(vec![next_entry(), next_entry()]).unwrap(),
// Subtree 1.
SmtLeaf::Single(next_entry()),
SmtLeaf::Single(next_entry()),
// Subtree 2.
SmtLeaf::Single(next_entry()),
];
assert_eq!(entries_iter.next(), None);
control_leaves
};
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = {
let mut control_leaves_iter = control_leaves.iter();
let mut next_leaf = || control_leaves_iter.next().unwrap();
let control_subtree_leaves: Vec<Vec<SubtreeLeaf>> = [
// Subtree 0.
vec![next_leaf(), next_leaf(), next_leaf()],
// Subtree 1.
vec![next_leaf(), next_leaf()],
// Subtree 2.
vec![next_leaf()],
]
.map(|subtree| subtree.into_iter().map(smtleaf_to_subtree_leaf).collect())
.to_vec();
assert_eq!(control_leaves_iter.next(), None);
control_subtree_leaves
};
let subtrees: PairComputations<u64, SmtLeaf> = Smt::sorted_pairs_to_leaves(entries).unwrap();
// This will check that the hashes, columns, and subtree assignments all match.
assert_eq!(subtrees.leaves, control_subtree_leaves);
// Flattening and re-separating out the leaves into subtrees should have the same result.
let mut all_leaves: Vec<SubtreeLeaf> = subtrees.leaves.clone().into_iter().flatten().collect();
let re_grouped: Vec<Vec<_>> = SubtreeLeavesIter::from_leaves(&mut all_leaves).collect();
assert_eq!(subtrees.leaves, re_grouped);
// Then finally we might as well check the computed leaf nodes too.
let control_leaves: BTreeMap<u64, SmtLeaf> = control
.leaves()
.map(|(index, value)| (index.index.value(), value.clone()))
.collect();
for (column, test_leaf) in subtrees.nodes {
if test_leaf.is_empty() {
continue;
}
let control_leaf = control_leaves
.get(&column)
.unwrap_or_else(|| panic!("no leaf node found for column {column}"));
assert_eq!(control_leaf, &test_leaf);
}
}
// Helper for the below tests.
fn generate_entries(pair_count: u64) -> Vec<(RpoDigest, Word)> {
(0..pair_count)
.map(|i| {
let leaf_index = ((i as f64 / pair_count as f64) * (pair_count as f64)) as u64;
let key = RpoDigest::new([ONE, ONE, Felt::new(i), Felt::new(leaf_index)]);
let value = [ONE, ONE, ONE, Felt::new(i)];
(key, value)
})
.collect()
}
fn generate_updates(entries: Vec<(RpoDigest, Word)>, updates: usize) -> Vec<(RpoDigest, Word)> {
const REMOVAL_PROBABILITY: f64 = 0.2;
let mut rng = rng();
// Assertion to ensure input keys are unique
assert!(
entries.iter().map(|(key, _)| key).collect::<BTreeSet<_>>().len() == entries.len(),
"Input entries contain duplicate keys!"
);
let mut sorted_entries: Vec<(RpoDigest, Word)> = entries
.into_iter()
.choose_multiple(&mut rng, updates)
.into_iter()
.map(|(key, _)| {
let value = if rng.random_bool(REMOVAL_PROBABILITY) {
EMPTY_WORD
} else {
[ONE, ONE, ONE, Felt::new(rng.random())]
};
(key, value)
})
.collect();
sorted_entries.sort_by_key(|(key, _)| Smt::key_to_leaf_index(key).value());
sorted_entries
}
#[test]
fn test_single_subtree() {
// A single subtree's worth of leaves.
const PAIR_COUNT: u64 = COLS_PER_SUBTREE;
let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
// `entries` should already be sorted by nature of how we constructed it.
let leaves = Smt::sorted_pairs_to_leaves(entries).unwrap().leaves;
let leaves = leaves.into_iter().next().unwrap();
let (first_subtree, subtree_root) = build_subtree(leaves, SMT_DEPTH, SMT_DEPTH);
assert!(!first_subtree.is_empty());
// The inner nodes computed from that subtree should match the nodes in our control tree.
for (index, node) in first_subtree.into_iter() {
let control = control.get_inner_node(index);
assert_eq!(
control, node,
"subtree-computed node at index {index:?} does not match control",
);
}
// The root returned should also match the equivalent node in the control tree.
let control_root_index =
NodeIndex::new(SMT_DEPTH - SUBTREE_DEPTH, subtree_root.col).expect("Valid root index");
let control_root_node = control.get_inner_node(control_root_index);
let control_hash = control_root_node.hash();
assert_eq!(
control_hash, subtree_root.hash,
"Subtree-computed root at index {control_root_index:?} does not match control"
);
}
// Test that not just can we compute a subtree correctly, but we can feed the results of one
// subtree into computing another. In other words, test that `build_subtree()` is correctly
// composable.
#[test]
fn test_two_subtrees() {
// Two subtrees' worth of leaves.
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 2;
let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let PairComputations { leaves, .. } = Smt::sorted_pairs_to_leaves(entries).unwrap();
// With two subtrees' worth of leaves, we should have exactly two subtrees.
let [first, second]: [Vec<_>; 2] = leaves.try_into().unwrap();
assert_eq!(first.len() as u64, PAIR_COUNT / 2);
assert_eq!(first.len(), second.len());
let mut current_depth = SMT_DEPTH;
let mut next_leaves: Vec<SubtreeLeaf> = Default::default();
let (first_nodes, first_root) = build_subtree(first, SMT_DEPTH, current_depth);
next_leaves.push(first_root);
let (second_nodes, second_root) = build_subtree(second, SMT_DEPTH, current_depth);
next_leaves.push(second_root);
// All new inner nodes + the new subtree-leaves should be 512, for one depth-cycle.
let total_computed = first_nodes.len() + second_nodes.len() + next_leaves.len();
assert_eq!(total_computed as u64, PAIR_COUNT);
// Verify the computed nodes of both subtrees.
let computed_nodes = first_nodes.clone().into_iter().chain(second_nodes);
for (index, test_node) in computed_nodes {
let control_node = control.get_inner_node(index);
assert_eq!(
control_node, test_node,
"subtree-computed node at index {index:?} does not match control",
);
}
current_depth -= SUBTREE_DEPTH;
let (nodes, root_leaf) = build_subtree(next_leaves, SMT_DEPTH, current_depth);
assert_eq!(nodes.len(), SUBTREE_DEPTH as usize);
assert_eq!(root_leaf.col, 0);
for (index, test_node) in nodes {
let control_node = control.get_inner_node(index);
assert_eq!(
control_node, test_node,
"subtree-computed node at index {index:?} does not match control",
);
}
let index = NodeIndex::new(current_depth - SUBTREE_DEPTH, root_leaf.col).unwrap();
let control_root = control.get_inner_node(index).hash();
assert_eq!(control_root, root_leaf.hash, "Root mismatch");
}
#[test]
fn test_singlethreaded_subtrees() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let PairComputations {
leaves: mut leaf_subtrees,
nodes: test_leaves,
} = Smt::sorted_pairs_to_leaves(entries).unwrap();
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
// There's no flat_map_unzip(), so this is the best we can do.
let (nodes, mut subtree_roots): (Vec<UnorderedMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees
.into_iter()
.enumerate()
.map(|(i, subtree)| {
// Pre-assertions.
assert!(
subtree.is_sorted(),
"subtree {i} at bottom-depth {current_depth} is not sorted",
);
assert!(
!subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!",
);
// Do actual things.
let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth);
// Post-assertions.
for (&index, test_node) in nodes.iter() {
let control_node = control.get_inner_node(index);
assert_eq!(
test_node, &control_node,
"depth {} subtree {}: test node does not match control at index {:?}",
current_depth, i, index,
);
}
(nodes, subtree_root)
})
.unzip();
// Update state between each depth iteration.
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten());
assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}");
}
// Make sure the true leaves match, first checking length and then checking each individual
// leaf.
let control_leaves: BTreeMap<_, _> = control.leaves().collect();
let control_leaves_len = control_leaves.len();
let test_leaves_len = test_leaves.len();
assert_eq!(test_leaves_len, control_leaves_len);
for (col, ref test_leaf) in test_leaves {
let index = LeafIndex::new_max_depth(col);
let &control_leaf = control_leaves.get(&index).unwrap();
assert_eq!(test_leaf, control_leaf, "test leaf at column {col} does not match control");
}
// Make sure the inner nodes match, checking length first and then each individual leaf.
let control_nodes_len = control.inner_nodes().count();
let test_nodes_len = accumulated_nodes.len();
assert_eq!(test_nodes_len, control_nodes_len);
for (index, test_node) in accumulated_nodes.clone() {
let control_node = control.get_inner_node(index);
assert_eq!(test_node, control_node, "test node does not match control at {index:?}");
}
// After the last iteration of the above for loop, we should have the new root node actually
// in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from
// `build_subtree()`. So let's check both!
let control_root = control.get_inner_node(NodeIndex::root());
// That for loop should have left us with only one leaf subtree...
let [leaf_subtree]: [Vec<_>; 1] = leaf_subtrees.try_into().unwrap();
// which itself contains only one 'leaf'...
let [root_leaf]: [SubtreeLeaf; 1] = leaf_subtree.try_into().unwrap();
// which matches the expected root.
assert_eq!(control.root(), root_leaf.hash);
// Likewise `accumulated_nodes` should contain a node at the root index...
assert!(accumulated_nodes.contains_key(&NodeIndex::root()));
// and it should match our actual root.
let test_root = accumulated_nodes.get(&NodeIndex::root()).unwrap();
assert_eq!(control_root, *test_root);
// And of course the root we got from each place should match.
assert_eq!(control.root(), root_leaf.hash);
}
/// The parallel version of `test_singlethreaded_subtree()`.
#[test]
fn test_multithreaded_subtrees() {
use rayon::prelude::*;
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let mut accumulated_nodes: BTreeMap<NodeIndex, InnerNode> = Default::default();
let PairComputations {
leaves: mut leaf_subtrees,
nodes: test_leaves,
} = Smt::sorted_pairs_to_leaves(entries).unwrap();
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
let (nodes, mut subtree_roots): (Vec<UnorderedMap<_, _>>, Vec<SubtreeLeaf>) = leaf_subtrees
.into_par_iter()
.enumerate()
.map(|(i, subtree)| {
// Pre-assertions.
assert!(
subtree.is_sorted(),
"subtree {i} at bottom-depth {current_depth} is not sorted",
);
assert!(
!subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!",
);
let (nodes, subtree_root) = build_subtree(subtree, SMT_DEPTH, current_depth);
// Post-assertions.
for (&index, test_node) in nodes.iter() {
let control_node = control.get_inner_node(index);
assert_eq!(
test_node, &control_node,
"depth {} subtree {}: test node does not match control at index {:?}",
current_depth, i, index,
);
}
(nodes, subtree_root)
})
.unzip();
leaf_subtrees = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
accumulated_nodes.extend(nodes.into_iter().flatten());
assert!(!leaf_subtrees.is_empty(), "on depth {current_depth}");
}
// Make sure the true leaves match, checking length first and then each individual leaf.
let control_leaves: BTreeMap<_, _> = control.leaves().collect();
let control_leaves_len = control_leaves.len();
let test_leaves_len = test_leaves.len();
assert_eq!(test_leaves_len, control_leaves_len);
for (col, ref test_leaf) in test_leaves {
let index = LeafIndex::new_max_depth(col);
let &control_leaf = control_leaves.get(&index).unwrap();
assert_eq!(test_leaf, control_leaf);
}
// Make sure the inner nodes match, checking length first and then each individual leaf.
let control_nodes_len = control.inner_nodes().count();
let test_nodes_len = accumulated_nodes.len();
assert_eq!(test_nodes_len, control_nodes_len);
for (index, test_node) in accumulated_nodes.clone() {
let control_node = control.get_inner_node(index);
assert_eq!(test_node, control_node, "test node does not match control at {index:?}");
}
// After the last iteration of the above for loop, we should have the new root node actually
// in two places: one in `accumulated_nodes`, and the other as the "next leaves" return from
// `build_subtree()`. So let's check both!
let control_root = control.get_inner_node(NodeIndex::root());
// That for loop should have left us with only one leaf subtree...
let [leaf_subtree]: [_; 1] = leaf_subtrees.try_into().unwrap();
// which itself contains only one 'leaf'...
let [root_leaf]: [_; 1] = leaf_subtree.try_into().unwrap();
// which matches the expected root.
assert_eq!(control.root(), root_leaf.hash);
// Likewise `accumulated_nodes` should contain a node at the root index...
assert!(accumulated_nodes.contains_key(&NodeIndex::root()));
// and it should match our actual root.
let test_root = accumulated_nodes.get(&NodeIndex::root()).unwrap();
assert_eq!(control_root, *test_root);
// And of course the root we got from each place should match.
assert_eq!(control.root(), root_leaf.hash);
}
#[test]
fn test_with_entries_concurrent() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let mut entries = generate_entries(PAIR_COUNT);
let mut rng = rand::rng();
// Set 10% of the entries to have empty words as their values.
for _ in 0..PAIR_COUNT / 10 {
let random_index = rng.random_range(0..PAIR_COUNT);
entries[random_index as usize].1 = EMPTY_WORD;
}
let control = Smt::with_entries_sequential(entries.clone()).unwrap();
let smt = Smt::with_entries(entries.clone()).unwrap();
assert_eq!(smt.root(), control.root());
assert_eq!(smt, control);
}
/// Concurrent mutations
#[test]
fn test_singlethreaded_subtree_mutations() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let updates = generate_updates(entries.clone(), 1000);
let tree = Smt::with_entries_sequential(entries.clone()).unwrap();
let control = tree.compute_mutations_sequential(updates.clone());
let mut node_mutations = NodeMutations::default();
let (mut subtree_leaves, new_pairs) = tree.sorted_pairs_to_mutated_subtree_leaves(updates);
for current_depth in (SUBTREE_DEPTH..=SMT_DEPTH).step_by(SUBTREE_DEPTH as usize).rev() {
// There's no flat_map_unzip(), so this is the best we can do.
let (mutations_per_subtree, mut subtree_roots): (Vec<_>, Vec<_>) = subtree_leaves
.into_iter()
.enumerate()
.map(|(i, subtree)| {
// Pre-assertions.
assert!(
subtree.is_sorted(),
"subtree {i} at bottom-depth {current_depth} is not sorted",
);
assert!(
!subtree.is_empty(),
"subtree {i} at bottom-depth {current_depth} is empty!",
);
// Calculate the mutations for this subtree.
let (mutations_per_subtree, subtree_root) =
tree.build_subtree_mutations(subtree, SMT_DEPTH, current_depth);
// Check that the mutations match the control tree.
for (&index, mutation) in mutations_per_subtree.iter() {
let control_mutation = control.node_mutations().get(&index).unwrap();
assert_eq!(
control_mutation, mutation,
"depth {} subtree {}: mutation does not match control at index {:?}",
current_depth, i, index,
);
}
(mutations_per_subtree, subtree_root)
})
.unzip();
subtree_leaves = SubtreeLeavesIter::from_leaves(&mut subtree_roots).collect();
node_mutations.extend(mutations_per_subtree.into_iter().flatten());
assert!(!subtree_leaves.is_empty(), "on depth {current_depth}");
}
let [subtree]: [Vec<_>; 1] = subtree_leaves.try_into().unwrap();
let [root_leaf]: [SubtreeLeaf; 1] = subtree.try_into().unwrap();
// Check that the new root matches the control.
assert_eq!(control.new_root, root_leaf.hash);
// Check that the node mutations match the control.
assert_eq!(control.node_mutations().len(), node_mutations.len());
for (&index, mutation) in control.node_mutations().iter() {
let test_mutation = node_mutations.get(&index).unwrap();
assert_eq!(test_mutation, mutation);
}
// Check that the new pairs match the control
assert_eq!(control.new_pairs.len(), new_pairs.len());
for (&key, &value) in control.new_pairs.iter() {
let test_value = new_pairs.get(&key).unwrap();
assert_eq!(test_value, &value);
}
}
#[test]
fn test_compute_mutations_parallel() {
const PAIR_COUNT: u64 = COLS_PER_SUBTREE * 64;
let entries = generate_entries(PAIR_COUNT);
let tree = Smt::with_entries(entries.clone()).unwrap();
let updates = generate_updates(entries, 1000);
let control = tree.compute_mutations_sequential(updates.clone());
let mutations = tree.compute_mutations(updates);
assert_eq!(mutations.root(), control.root());
assert_eq!(mutations.old_root(), control.old_root());
assert_eq!(mutations.node_mutations(), control.node_mutations());
assert_eq!(mutations.new_pairs(), control.new_pairs());
}
#[test]
fn test_smt_construction_with_entries_unsorted() {
let entries = [
(RpoDigest::new([ONE, ONE, Felt::new(2_u64), ONE]), [ONE; 4]),
(RpoDigest::new([ONE; 4]), [ONE; 4]),
];
let control = Smt::with_entries_sequential(entries).unwrap();
let smt = Smt::with_entries(entries).unwrap();
assert_eq!(smt.root(), control.root());
assert_eq!(smt, control);
}
#[test]
fn test_smt_construction_with_entries_duplicate_keys() {
let entries = [
(RpoDigest::new([ONE, ONE, ONE, Felt::new(16)]), [ONE; 4]),
(RpoDigest::new([ONE; 4]), [ONE; 4]),
(RpoDigest::new([ONE, ONE, ONE, Felt::new(16)]), [ONE; 4]),
];
let expected_col = Smt::key_to_leaf_index(&entries[0].0).index.value();
let err = Smt::with_entries(entries).unwrap_err();
assert_matches!(err, MerkleError::DuplicateValuesForIndex(col) if col == expected_col);
}
#[test]
fn test_smt_construction_with_some_empty_values() {
let entries = [
(RpoDigest::new([ONE, ONE, ONE, ONE]), Smt::EMPTY_VALUE),
(RpoDigest::new([ONE, ONE, ONE, Felt::new(2)]), [ONE; 4]),
];
let result = Smt::with_entries(entries);
assert!(result.is_ok(), "SMT construction failed with mixed empty values");
let smt = result.unwrap();
let control = Smt::with_entries_sequential(entries).unwrap();
assert_eq!(smt.num_leaves(), 1);
assert_eq!(smt.root(), control.root(), "Root hashes do not match");
assert_eq!(smt, control, "SMTs are not equal");
}
#[test]
fn test_smt_construction_with_all_empty_values() {
let entries = [(RpoDigest::new([ONE, ONE, ONE, ONE]), Smt::EMPTY_VALUE)];
let result = Smt::with_entries(entries);
assert!(result.is_ok(), "SMT construction failed with all empty values");
let smt = result.unwrap();
assert_eq!(
smt.root(),
Smt::default().root(),
"SMT with all empty values should have the same root as the default SMT"
);
assert_eq!(smt, Smt::default(), "SMT with all empty values should be empty");
}
#[test]
fn test_smt_construction_with_no_entries() {
let entries: [(RpoDigest, Word); 0] = [];
let result = Smt::with_entries(entries);
assert!(result.is_ok(), "SMT construction failed with no entries");
let smt = result.unwrap();
assert_eq!(smt, Smt::default(), "SMT with no entries should be empty");
}
fn arb_felt() -> impl Strategy<Value = Felt> {
prop_oneof![any::<u64>().prop_map(Felt::new), Just(ZERO), Just(ONE),]
}
/// Generate entries that are guaranteed to be in different subtrees
fn generate_cross_subtree_entries() -> impl Strategy<Value = Vec<(RpoDigest, Word)>> {
let subtree_offsets = prop::collection::vec(0..(COLS_PER_SUBTREE * 4), 1..100);
subtree_offsets.prop_map(|offsets| {
offsets
.into_iter()
.map(|base_col| {
let key = RpoDigest::new([ONE, ONE, ONE, Felt::new(base_col)]);
let value = [ONE, ONE, ONE, Felt::new(base_col)];
(key, value)
})
.collect()
})
}
fn arb_entries() -> impl Strategy<Value = Vec<(RpoDigest, Word)>> {
// Combine random entries with guaranteed cross-subtree entries
prop_oneof![
// Original random entry generation
prop::collection::vec(
prop_oneof![
// Random values case
(
prop::array::uniform4(arb_felt()).prop_map(RpoDigest::new),
prop::array::uniform4(arb_felt())
),
// Edge case values
(
Just(RpoDigest::new([ONE, ONE, ONE, Felt::new(0)])),
Just([ONE, ONE, ONE, Felt::new(u64::MAX)])
)
],
1..1000,
),
// Guaranteed cross-subtree entries
generate_cross_subtree_entries(),
// Mix of both (combine random and cross-subtree entries)
(
generate_cross_subtree_entries(),
prop::collection::vec(
(
prop::array::uniform4(arb_felt()).prop_map(RpoDigest::new),
prop::array::uniform4(arb_felt())
),
1..1000,
)
)
.prop_map(|(mut cross_subtree, mut random)| {
cross_subtree.append(&mut random);
cross_subtree
})
]
.prop_map(|entries| {
// Ensure uniqueness of entries as `Smt::with_entries` returns an error if multiple values
// exist for the same key.
let mut used_indices = BTreeSet::new();
let mut used_keys = BTreeSet::new();
let mut result = Vec::new();
for (key, value) in entries {
let leaf_index = LeafIndex::<SMT_DEPTH>::from(key).value();
if used_indices.insert(leaf_index) && used_keys.insert(key) {
result.push((key, value));
}
}
result
})
}
proptest! {
#[test]
fn test_with_entries_consistency(entries in arb_entries()) {
let sequential = Smt::with_entries_sequential(entries.clone()).unwrap();
let concurrent = Smt::with_entries(entries.clone()).unwrap();
prop_assert_eq!(concurrent, sequential);
}
#[test]
fn test_compute_mutations_consistency(
initial_entries in arb_entries(),
update_entries in arb_entries().prop_filter(
"Update must not be empty and must differ from initial entries",
|updates| !updates.is_empty()
)
) {
let tree = Smt::with_entries_sequential(initial_entries.clone()).unwrap();
let has_real_changes = update_entries.iter().any(|(key, value)| {
match initial_entries.iter().find(|(init_key, _)| init_key == key) {
Some((_, init_value)) => init_value != value,
None => true,
}
});
let sequential = tree.compute_mutations_sequential(update_entries.clone());
let concurrent = tree.compute_mutations(update_entries.clone());
// If there are real changes, the root should change
if has_real_changes {
let sequential_changed = sequential.old_root != sequential.new_root;
let concurrent_changed = concurrent.old_root != concurrent.new_root;
prop_assert!(
sequential_changed || concurrent_changed,
"Root should have changed"
);
}
prop_assert_eq!(sequential.old_root, concurrent.old_root);
prop_assert_eq!(sequential.new_root, concurrent.new_root);
prop_assert_eq!(sequential.node_mutations(), concurrent.node_mutations());
prop_assert_eq!(sequential.new_pairs.len(), concurrent.new_pairs.len());
}
}